Abstract

We experimentally demonstrate a novel scheme to simultaneously confine two atomic species of 87Rb and 133Cs with adjustable spatial separation by a controllable double-well magneto-optic trap. Using a single-loop wire and a magnetic bias field, the two clouds, each containing more than 1×106 atoms, are spatially separated above and below the wire center of the double-well MOT. The cloud interdistance can be controlled by independently varying the wire current and external bias field. This allows to load the double-well magnetic trap, and to study the dynamics of cold collisions between two-species atoms.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
    [Crossref]
  2. T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, “Spin-polarized spontaneous-force atom trap,” Phy. Rev. Lett.69, 2168–2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, “Multiply loaded magneto-optical trap,” Opt. Lett. 21, 290–292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phy. Rev. Lett. 83, 3398–3401 (1999); T. Pfau and J. Mlynek, “A 2D quantum gas of laser cooled atoms,” OSA Trends in Optics and Photonics 7, 33–38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface Trap for Cs atoms based on Evanescent-Wave Cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
    [Crossref]
  3. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
    [Crossref] [PubMed]
  4. M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
    [Crossref] [PubMed]
  5. M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
    [Crossref]
  6. G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction,” Phy. Rev. Lett.89, 150403.1–150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, “Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,” Science 294 1320–1324 (2001).
    [Crossref]
  7. M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
    [Crossref]
  8. M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
    [Crossref]
  9. H. Pu and N. P. Bigelow, “Properties of Two-Species Bose Condensates,” Phy. Rev. Lett. 80, 1130–1133 (1997).
    [Crossref]
  10. W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
    [Crossref]
  11. J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
    [Crossref]
  12. N. R. Thomas, A. C. Wilson, and C. J. Foot, “Double-well magnetic trap for Bose-Einstein condensates,” Phys. Rev. A 65, 063406.1–063406.8 (2002).
    [Crossref]
  13. G.-P. Guo and G.-C. Guo, “Entanglement of individual photon and atomic ensembles,” Quantum Information and Computation 3, 627–634 (2003).
  14. S. Ashhab and C. Lobo, “External Josephson effect in Bose-Einstein condensates with a spin degree of freedom,” Phys. Rev. A 66, 013609.1–013609.10 (2002).
    [Crossref]
  15. A. B. Matsko, N. Yu, and L. Maleki, “Gravity field measurements using cold atoms with direct optical readout,” Phys. Rev. A 67, 043819.1–043819.12 (2003).
    [Crossref]
  16. N. Kjærgaard, A. S. Mellish, and A. C. Wilson, “Differential scattering measurements from a collider for ultracold atoms,” New J. Phys.6, 146.1–146.15 (2004); N. R. Thomas, N. Kjargaard, P. S. Julienne, and A. C. Wilson, “Imaging of s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms,” Phy. Rev. Lett. 93, 173201.1–173201.4 (2004).
    [Crossref]
  17. M. Yun and J. Yin, “Controllable double-well magneto-optic atom trap with a circular current-carrying wire,” Opt. Lett. 30, 696–698 (2005).
    [Crossref] [PubMed]
  18. K. E. Gibble, S. Kasapi, and S. Chu, “Improved magneto-optic trapping in a vapor cell,” Opt. Lett. 17, 526–528 (1992).
    [Crossref] [PubMed]
  19. C. G. Townsend, “Laser Cooling and Trapping of Atoms,” Ph.D. thesis (Oxford University, 1995).
  20. The model used to calculate the atom numbers in Ref. [17] is based on the low trapping beam intensity assumption, and uses a small laser detuning, which are different from what we use in the experiment.
  21. K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
    [Crossref]
  22. B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
    [Crossref]
  23. A molasses cooling of a few ms on Rb is needed before the guiding beam is switched on.
  24. Ch. Buggle, J. Leonard, W. von Klitzing, and J. T. M. Walraven, “Bose-Einstein Condensates Studied with a Linear Accelerator,” in Laser Spectroscopy, E. A. Hinds, A. Ferguson, and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199–206.
  25. Since the two quadrupole centers have the opposite magnetic sign, the new Rb MOT beams should have the same helicity as the Cs ones.
  26. Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
    [Crossref]

2007 (1)

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
[Crossref]

2006 (1)

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

2005 (3)

M. Yun and J. Yin, “Controllable double-well magneto-optic atom trap with a circular current-carrying wire,” Opt. Lett. 30, 696–698 (2005).
[Crossref] [PubMed]

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

2004 (1)

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

2003 (2)

G.-P. Guo and G.-C. Guo, “Entanglement of individual photon and atomic ensembles,” Quantum Information and Computation 3, 627–634 (2003).

A. B. Matsko, N. Yu, and L. Maleki, “Gravity field measurements using cold atoms with direct optical readout,” Phys. Rev. A 67, 043819.1–043819.12 (2003).
[Crossref]

2002 (3)

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
[Crossref]

S. Ashhab and C. Lobo, “External Josephson effect in Bose-Einstein condensates with a spin degree of freedom,” Phys. Rev. A 66, 013609.1–013609.10 (2002).
[Crossref]

N. R. Thomas, A. C. Wilson, and C. J. Foot, “Double-well magnetic trap for Bose-Einstein condensates,” Phys. Rev. A 65, 063406.1–063406.8 (2002).
[Crossref]

2001 (1)

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
[Crossref]

1998 (1)

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

1997 (1)

H. Pu and N. P. Bigelow, “Properties of Two-Species Bose Condensates,” Phy. Rev. Lett. 80, 1130–1133 (1997).
[Crossref]

1995 (1)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

1992 (1)

1987 (1)

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

Anderlini, M.

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

Andersen, H. K.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
[Crossref]

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Arimondo, E.

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

Ashhab, S.

S. Ashhab and C. Lobo, “External Josephson effect in Bose-Einstein condensates with a spin degree of freedom,” Phys. Rev. A 66, 013609.1–013609.10 (2002).
[Crossref]

Bagnato, V. S.

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Bertelsen, J. F.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
[Crossref]

Bigelow, N. P.

H. Pu and N. P. Bigelow, “Properties of Two-Species Bose Condensates,” Phy. Rev. Lett. 80, 1130–1133 (1997).
[Crossref]

Budde, M.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
[Crossref]

Buggle, Ch.

Ch. Buggle, J. Leonard, W. von Klitzing, and J. T. M. Walraven, “Bose-Einstein Condensates Studied with a Linear Accelerator,” in Laser Spectroscopy, E. A. Hinds, A. Ferguson, and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199–206.

Cable, A.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

Caires, A. R. L.

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

Chu, S.

K. E. Gibble, S. Kasapi, and S. Chu, “Improved magneto-optic trapping in a vapor cell,” Opt. Lett. 17, 526–528 (1992).
[Crossref] [PubMed]

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

Ciampini, D.

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

Cornell, E. A.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Cornelussen, R. A.

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
[Crossref]

Cossart, D.

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

Courtade, E.

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

Courteille, Ph. W.

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Cristiani, M.

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

Deh, B.

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Dieckmann, K.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Feng, P.

T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, “Spin-polarized spontaneous-force atom trap,” Phy. Rev. Lett.69, 2168–2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, “Multiply loaded magneto-optical trap,” Opt. Lett. 21, 290–292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phy. Rev. Lett. 83, 3398–3401 (1999); T. Pfau and J. Mlynek, “A 2D quantum gas of laser cooled atoms,” OSA Trends in Optics and Photonics 7, 33–38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface Trap for Cs atoms based on Evanescent-Wave Cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
[Crossref]

Flemming, J.

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Foot, C. J.

N. R. Thomas, A. C. Wilson, and C. J. Foot, “Double-well magnetic trap for Bose-Einstein condensates,” Phys. Rev. A 65, 063406.1–063406.8 (2002).
[Crossref]

Fortagh, J.

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Gibble, K. E.

Gunther, A

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Guo, G.-C.

G.-P. Guo and G.-C. Guo, “Entanglement of individual photon and atomic ensembles,” Quantum Information and Computation 3, 627–634 (2003).

Guo, G.-P.

G.-P. Guo and G.-C. Guo, “Entanglement of individual photon and atomic ensembles,” Quantum Information and Computation 3, 627–634 (2003).

Hansch, T. W.

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
[Crossref]

Hansel, W.

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
[Crossref]

Helmerson, K.

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Hoffmann, D.

T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, “Spin-polarized spontaneous-force atom trap,” Phy. Rev. Lett.69, 2168–2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, “Multiply loaded magneto-optical trap,” Opt. Lett. 21, 290–292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phy. Rev. Lett. 83, 3398–3401 (1999); T. Pfau and J. Mlynek, “A 2D quantum gas of laser cooled atoms,” OSA Trends in Optics and Photonics 7, 33–38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface Trap for Cs atoms based on Evanescent-Wave Cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
[Crossref]

Hommelhoff, P.

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
[Crossref]

Inguscio, M.

G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction,” Phy. Rev. Lett.89, 150403.1–150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, “Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,” Science 294 1320–1324 (2001).
[Crossref]

Kasapi, S.

Kjærgaard, N.

N. Kjærgaard, A. S. Mellish, and A. C. Wilson, “Differential scattering measurements from a collider for ultracold atoms,” New J. Phys.6, 146.1–146.15 (2004); N. R. Thomas, N. Kjargaard, P. S. Julienne, and A. C. Wilson, “Imaging of s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms,” Phy. Rev. Lett. 93, 173201.1–173201.4 (2004).
[Crossref]

Kraft, S.

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Leonard, J.

Ch. Buggle, J. Leonard, W. von Klitzing, and J. T. M. Walraven, “Bose-Einstein Condensates Studied with a Linear Accelerator,” in Laser Spectroscopy, E. A. Hinds, A. Ferguson, and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199–206.

Lobo, C.

S. Ashhab and C. Lobo, “External Josephson effect in Bose-Einstein condensates with a spin degree of freedom,” Phys. Rev. A 66, 013609.1–013609.10 (2002).
[Crossref]

Mai, S.

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
[Crossref]

Maleki, L.

A. B. Matsko, N. Yu, and L. Maleki, “Gravity field measurements using cold atoms with direct optical readout,” Phys. Rev. A 67, 043819.1–043819.12 (2003).
[Crossref]

Mancini, M. W.

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

Marcassa, L. G.

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Marzok, C

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Matsko, A. B.

A. B. Matsko, N. Yu, and L. Maleki, “Gravity field measurements using cold atoms with direct optical readout,” Phys. Rev. A 67, 043819.1–043819.12 (2003).
[Crossref]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Mellish, A. S.

N. Kjærgaard, A. S. Mellish, and A. C. Wilson, “Differential scattering measurements from a collider for ultracold atoms,” New J. Phys.6, 146.1–146.15 (2004); N. R. Thomas, N. Kjargaard, P. S. Julienne, and A. C. Wilson, “Imaging of s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms,” Phy. Rev. Lett. 93, 173201.1–173201.4 (2004).
[Crossref]

Modugno, G.

G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction,” Phy. Rev. Lett.89, 150403.1–150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, “Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,” Science 294 1320–1324 (2001).
[Crossref]

Morsch, O.

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

Nussenzveig, P.

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Prentiss, M.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

Pritchard, D.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

Pu, H.

H. Pu and N. P. Bigelow, “Properties of Two-Species Bose Condensates,” Phy. Rev. Lett. 80, 1130–1133 (1997).
[Crossref]

Raab, E.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

Reichel, J.

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
[Crossref]

Riboli, F.

G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction,” Phy. Rev. Lett.89, 150403.1–150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, “Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,” Science 294 1320–1324 (2001).
[Crossref]

Roati, G.

G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction,” Phy. Rev. Lett.89, 150403.1–150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, “Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,” Science 294 1320–1324 (2001).
[Crossref]

Santos, M. S.

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Sias, C.

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

Slama, S.

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

Spreeuw, R. J. C.

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
[Crossref]

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

Telles, G. D.

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

Thomas, N. R.

N. R. Thomas, A. C. Wilson, and C. J. Foot, “Double-well magnetic trap for Bose-Einstein condensates,” Phys. Rev. A 65, 063406.1–063406.8 (2002).
[Crossref]

Townsend, C. G.

C. G. Townsend, “Laser Cooling and Trapping of Atoms,” Ph.D. thesis (Oxford University, 1995).

van Linden van den Heuvell, H. B.

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
[Crossref]

von Klitzing, W.

Ch. Buggle, J. Leonard, W. von Klitzing, and J. T. M. Walraven, “Bose-Einstein Condensates Studied with a Linear Accelerator,” in Laser Spectroscopy, E. A. Hinds, A. Ferguson, and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199–206.

Walker, T.

T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, “Spin-polarized spontaneous-force atom trap,” Phy. Rev. Lett.69, 2168–2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, “Multiply loaded magneto-optical trap,” Opt. Lett. 21, 290–292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phy. Rev. Lett. 83, 3398–3401 (1999); T. Pfau and J. Mlynek, “A 2D quantum gas of laser cooled atoms,” OSA Trends in Optics and Photonics 7, 33–38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface Trap for Cs atoms based on Evanescent-Wave Cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
[Crossref]

Walraven, J. T. M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

Ch. Buggle, J. Leonard, W. von Klitzing, and J. T. M. Walraven, “Bose-Einstein Condensates Studied with a Linear Accelerator,” in Laser Spectroscopy, E. A. Hinds, A. Ferguson, and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199–206.

Weidemuller, M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

Wieman, C. E.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Williamson, III, R. S.

T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, “Spin-polarized spontaneous-force atom trap,” Phy. Rev. Lett.69, 2168–2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, “Multiply loaded magneto-optical trap,” Opt. Lett. 21, 290–292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phy. Rev. Lett. 83, 3398–3401 (1999); T. Pfau and J. Mlynek, “A 2D quantum gas of laser cooled atoms,” OSA Trends in Optics and Photonics 7, 33–38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface Trap for Cs atoms based on Evanescent-Wave Cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
[Crossref]

Wilson, A. C.

N. R. Thomas, A. C. Wilson, and C. J. Foot, “Double-well magnetic trap for Bose-Einstein condensates,” Phys. Rev. A 65, 063406.1–063406.8 (2002).
[Crossref]

N. Kjærgaard, A. S. Mellish, and A. C. Wilson, “Differential scattering measurements from a collider for ultracold atoms,” New J. Phys.6, 146.1–146.15 (2004); N. R. Thomas, N. Kjargaard, P. S. Julienne, and A. C. Wilson, “Imaging of s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms,” Phy. Rev. Lett. 93, 173201.1–173201.4 (2004).
[Crossref]

Wolschrijn, B. T.

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
[Crossref]

Yin, J.

Yu, N.

A. B. Matsko, N. Yu, and L. Maleki, “Gravity field measurements using cold atoms with direct optical readout,” Phys. Rev. A 67, 043819.1–043819.12 (2003).
[Crossref]

Yun, M.

Zilio, S. C.

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

Zimmermann, C.

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

Ph. W. Courteille, B. Deh, J. Fortagh, A Gunther, S. Kraft, C Marzok, S. Slama, and C. Zimmermann, “Highly versatile atomic micro traps generated by multifrequency magnetic field modulation,” J. Phys. B: At. Mol. Opt. Phys. 39, 1055–1064 (2006).
[Crossref]

New J. Phys. (1)

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Guiding of cold atoms by a red-detuned laser beam of moderate power,” New J. Phys. 4, 69.1–69.10 (2002).
[Crossref]

Opt. Lett. (2)

Phy. Rev. A (1)

J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phy. Rev. A 75, 013404.1–013404.11 (2007).
[Crossref]

Phy. Rev. Lett. (4)

H. Pu and N. P. Bigelow, “Properties of Two-Species Bose Condensates,” Phy. Rev. Lett. 80, 1130–1133 (1997).
[Crossref]

W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Magnetic Conveyor Belt for Transporting and Merging Trapped Atom Clouds,” Phy. Rev. Lett. 86, 608–611 (2001).
[Crossref]

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phy. Rev. Lett. 59, 2631–2634 (1987).
[Crossref]

M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, “Observation of Ultracold Ground-State Heteronuclear Molecules,” Phy. Rev. Lett. 92, 133203.1–133203.4 (2004).
[Crossref]

Phys. Rev. A (6)

M. Anderlini, E. Courtade, M. Cristiani, D. Cossart, D. Ciampini, C. Sias, O. Morsch, and E. Arimondo, “Sympathetic cooling and collisional properties of a Rb-Cs mixture,” Phys. Rev. A 71, 061401(R).1–061401(R).4 (2005).
[Crossref]

M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias, O. Morsch, and E. Arimondo, “Model for collisions in ultracold-atom mixtures,” Phys. Rev. A 72, 033408.1–33408.9 (2005).
[Crossref]

N. R. Thomas, A. C. Wilson, and C. J. Foot, “Double-well magnetic trap for Bose-Einstein condensates,” Phys. Rev. A 65, 063406.1–063406.8 (2002).
[Crossref]

K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998).
[Crossref]

S. Ashhab and C. Lobo, “External Josephson effect in Bose-Einstein condensates with a spin degree of freedom,” Phys. Rev. A 66, 013609.1–013609.10 (2002).
[Crossref]

A. B. Matsko, N. Yu, and L. Maleki, “Gravity field measurements using cold atoms with direct optical readout,” Phys. Rev. A 67, 043819.1–043819.12 (2003).
[Crossref]

Quantum Information and Computation (1)

G.-P. Guo and G.-C. Guo, “Entanglement of individual photon and atomic ensembles,” Quantum Information and Computation 3, 627–634 (2003).

Science (1)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198–201 (1995).
[Crossref] [PubMed]

Other (9)

M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A52, R4340–R4343 (1995); M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T. W. Hansch, and K. Dieckmann, “Simultaneous magneto-optical trapping of three atomic species,” Phys. Rev. A 73, 011402(R).1–011402(R).6 (2006).
[Crossref] [PubMed]

T. Walker, P. Feng, D. Hoffmann, and R. S. Williamson, III, “Spin-polarized spontaneous-force atom trap,” Phy. Rev. Lett.69, 2168–2172 (1992); C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, “Multiply loaded magneto-optical trap,” Opt. Lett. 21, 290–292 (1996); J. Reichel, W. Hansel, and T. W. Hansch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phy. Rev. Lett. 83, 3398–3401 (1999); T. Pfau and J. Mlynek, “A 2D quantum gas of laser cooled atoms,” OSA Trends in Optics and Photonics 7, 33–38 (1997); Y. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface Trap for Cs atoms based on Evanescent-Wave Cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997); K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
[Crossref]

G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-Bose Quantum Degenerate 40K-87Rb Mixture with Attractive Interaction,” Phy. Rev. Lett.89, 150403.1–150403.4 (2002); G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, M. Inguscio, “Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,” Science 294 1320–1324 (2001).
[Crossref]

C. G. Townsend, “Laser Cooling and Trapping of Atoms,” Ph.D. thesis (Oxford University, 1995).

The model used to calculate the atom numbers in Ref. [17] is based on the low trapping beam intensity assumption, and uses a small laser detuning, which are different from what we use in the experiment.

N. Kjærgaard, A. S. Mellish, and A. C. Wilson, “Differential scattering measurements from a collider for ultracold atoms,” New J. Phys.6, 146.1–146.15 (2004); N. R. Thomas, N. Kjargaard, P. S. Julienne, and A. C. Wilson, “Imaging of s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms,” Phy. Rev. Lett. 93, 173201.1–173201.4 (2004).
[Crossref]

A molasses cooling of a few ms on Rb is needed before the guiding beam is switched on.

Ch. Buggle, J. Leonard, W. von Klitzing, and J. T. M. Walraven, “Bose-Einstein Condensates Studied with a Linear Accelerator,” in Laser Spectroscopy, E. A. Hinds, A. Ferguson, and E. Riis, eds., (World Scientific, Singapore, 2005), pp. 199–206.

Since the two quadrupole centers have the opposite magnetic sign, the new Rb MOT beams should have the same helicity as the Cs ones.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the double-well MOT setup. The Rb and Cs trapping beams are shown in white and gray, respectively. The inner coil center is located at the position (0, 0, 0).

Fig. 2.
Fig. 2.

False-color fluorescence images of Rb clouds (upper) and Cs clouds (lower) at different bias fields, from 7.0 to 14.0 G (left to right), while I=13.87 A. The central saturated portion in each image is caused by the stray light from the inner wire.

Fig. 3.
Fig. 3.

Center positions and atom numbers of the two MOTs versus B b while I=13.87 A. The empty and solid circles are the measured center positions for Rb and Cs clouds, and the dash lines are their theoretical values. The empty and solid squares are the measured atom numbers for Rb and Cs MOTs, respectively. In this measurement, the horizontal trapping beams are centered at z ~4 mm for Rb, and z ~-4 mm for Cs.

Fig. 4.
Fig. 4.

Center positions and atom numbers of the two MOTs versus I while B b=10.35 G. The empty and solid circles are the measured center positions for Rb and Cs clouds, and the dash lines are their theoretical values. The empty and solid squares are the measured atom numbers for Rb and Cs MOTs, respectively. In this measurement, the horizontal trapping beams are centered at z ~3 mm for Rb, and z ~-3 mm for Cs.

Fig. 5.
Fig. 5.

7.6 mm×5.4 mm false-color fluorescence image of the 2D Rb MOT (upper) and 3D Cs MOT (lower). Each cloud contains more than 106 atoms under the condition I=11.7 A and B b=10.35 G.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Z 0 = ± [ ( μ 0 I R 2 2 B b ) 2 3 R 2 ] 1 2 ,

Metrics