Abstract

This investigation demonstrates the generation of OFDM-RoF signal using frequency doubling technique for the first time, to the author’s best knowledge. The 4-Gb/s OFDM signal using 16-QAM format modulated on each subcarrier at a center frequency of 19GHz is experimentally demonstrated. Benchmarked against the OOK format, the 16-QAM OFDM format has the higher spectral efficiency with a sensitivity penalty of less than 2.6 dB. After transmission over 50-km single mode fiber, the power penalties of RF OOK and OFDM signals are less than 0.5dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lowery and J. Armstrong, "Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems," Opt. Express 14, 2079-2084 (2006).
    [CrossRef] [PubMed]
  2. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 14, 3767-3775 (2006).
    [CrossRef] [PubMed]
  3. H. Bao and W. Shieh, "Transmission simulation of coherent optical OFDM signals in WDM systems," Opt. Express 15, 4410-4418 (2007).
    [CrossRef] [PubMed]
  4. W. H. Chen, and W. I. Way, "Multichannel Single-Sideband SCM/DWDM Transmission System," J. Lightwave Technol. 22, 1697-1693 (2004).
    [CrossRef]
  5. C. Wu and X. Zhang, "Impact of Nonlinear Distortion in Radio Over Fiber Systems with Single-Sideband and Tandem Single-Sideband Subcarrier Modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
    [CrossRef]
  6. J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
    [CrossRef]
  7. J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).
  8. Lim, C. Lin, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, "Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links," IEEE J. Lightwave Technol. 54, 2181-2187 (2006).
  9. L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
    [CrossRef]
  10. S. Choi, Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks," IEEE Trans. Microwave Theory Technol 56, 232-241 (2008).
    [CrossRef]
  11. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Continuous-phase frequency-shift keying with external modulation," IEEE J. Sel. Top. Quantum Electron. 12, 589-595 (2006).
    [CrossRef]
  12. W. Shieh, X. Yi, and Y. Tang, "Experimental Demonstration of Transmission of Coherent Optical OFDM Systems," OFC/NFOEC 2007, OMP2, March, 2007.
  13. V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
    [CrossRef]
  14. M. KaveHrad and E. Savov, "Fiber-Optic Transmission of Microwave 64-QAM Signals," IEEE J. Sel. Areas Commun. 8, 1320-1326 (1990).
    [CrossRef]

2008 (1)

S. Choi, Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks," IEEE Trans. Microwave Theory Technol 56, 232-241 (2008).
[CrossRef]

2007 (1)

2006 (6)

J. Lowery and J. Armstrong, "Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems," Opt. Express 14, 2079-2084 (2006).
[CrossRef] [PubMed]

B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 14, 3767-3775 (2006).
[CrossRef] [PubMed]

C. Wu and X. Zhang, "Impact of Nonlinear Distortion in Radio Over Fiber Systems with Single-Sideband and Tandem Single-Sideband Subcarrier Modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Lim, C. Lin, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, "Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links," IEEE J. Lightwave Technol. 54, 2181-2187 (2006).

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Continuous-phase frequency-shift keying with external modulation," IEEE J. Sel. Top. Quantum Electron. 12, 589-595 (2006).
[CrossRef]

2004 (2)

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

W. H. Chen, and W. I. Way, "Multichannel Single-Sideband SCM/DWDM Transmission System," J. Lightwave Technol. 22, 1697-1693 (2004).
[CrossRef]

1999 (1)

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

1992 (1)

J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

1990 (1)

M. KaveHrad and E. Savov, "Fiber-Optic Transmission of Microwave 64-QAM Signals," IEEE J. Sel. Areas Commun. 8, 1320-1326 (1990).
[CrossRef]

Armstrong, J.

Bao, H.

Bucholtz, F.

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Chen, W. H.

W. H. Chen, and W. I. Way, "Multichannel Single-Sideband SCM/DWDM Transmission System," J. Lightwave Technol. 22, 1697-1693 (2004).
[CrossRef]

Choi, S.

S. Choi, Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks," IEEE Trans. Microwave Theory Technol 56, 232-241 (2008).
[CrossRef]

Djordjevic, B.

Edge, C.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Elkin, M. D.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Gliese, U.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Heidemann, R.

J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

Hofstetter, R.

J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

Huang, X.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Continuous-phase frequency-shift keying with external modulation," IEEE J. Sel. Top. Quantum Electron. 12, 589-595 (2006).
[CrossRef]

Jia, Z.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Continuous-phase frequency-shift keying with external modulation," IEEE J. Sel. Top. Quantum Electron. 12, 589-595 (2006).
[CrossRef]

Lane, P. M.

J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

Langey, L. N.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Lim,

Lim, C. Lin, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, "Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links," IEEE J. Lightwave Technol. 54, 2181-2187 (2006).

Lowery, J.

O??Reilly, J. J.

J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

Ogawa, H.

S. Choi, Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks," IEEE Trans. Microwave Theory Technol 56, 232-241 (2008).
[CrossRef]

Qiu, J. X.

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Continuous-phase frequency-shift keying with external modulation," IEEE J. Sel. Top. Quantum Electron. 12, 589-595 (2006).
[CrossRef]

Seeds, A. J.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Shieh, W.

Shoji, Y.

S. Choi, Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks," IEEE Trans. Microwave Theory Technol 56, 232-241 (2008).
[CrossRef]

Urick, V. J.

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

Vasic, B.

Wale, M. J.

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Way, W. I.

W. H. Chen, and W. I. Way, "Multichannel Single-Sideband SCM/DWDM Transmission System," J. Lightwave Technol. 22, 1697-1693 (2004).
[CrossRef]

Yi, L.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Yu, J.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Areas in Commun. (1)

M. KaveHrad and E. Savov, "Fiber-Optic Transmission of Microwave 64-QAM Signals," IEEE J. Sel. Areas Commun. 8, 1320-1326 (1990).
[CrossRef]

Electron. Lett. (1)

J. J. O??Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

IEEE J. Lightwave Technol. (1)

Lim, C. Lin, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, "Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links," IEEE J. Lightwave Technol. 54, 2181-2187 (2006).

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Continuous-phase frequency-shift keying with external modulation," IEEE J. Sel. Top. Quantum Electron. 12, 589-595 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, "Optical millimeter wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Technol (2)

L. N. Langey, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microwave Theory Technol 47, 1257-1264 (1999).
[CrossRef]

S. Choi, Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access system based on dense wavelength-division-multiplexing networks," IEEE Trans. Microwave Theory Technol 56, 232-241 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (1)

W. Shieh, X. Yi, and Y. Tang, "Experimental Demonstration of Transmission of Coherent Optical OFDM Systems," OFC/NFOEC 2007, OMP2, March, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Conceptual diagram of generating direct-detection optical OFDM-RoF signals. (1)(2)(3)(4): Electrical input signal. (i)(ii)(ii)(iv)(v): Optical spectrum of data signal. (a)(b)(c)(d)(e): Optical spectrum of sinusoidal signal. (f): Optical spectrum of RF signal.

Fig. 2.
Fig. 2.

Experimental setup of optical RF signal generation and (i) RF OOK and (ii) RF OFDM signal receivers. (V π : half-wave voltage of MZM. EA: electrical amplifier. EDFA: Erbium-doped optical fiber amplifier, LPF: low-pass filter. OBPF: optical band-pass filter. SMF: single mode fiber. O/E: optical to electrical conversion)

Fig. 3.
Fig. 3.

Block diagrams of OFDM transmitter (a) and receiver (b). (IFFT: inverse fast Fourier transform, DAC: digital to analog converter, ADC: analog to digital converter, FFT: fast Fourier transform).

Fig. 4.
Fig. 4.

Electrical spectra of OFDM signals. (a) After AWG. (b) After up-conversion. (c) After PD detection. (d) After down-conversion.

Fig. 5.
Fig. 5.

Optical spectra of RF signals. (a) Sinusoidal signal. (b) OFDM signal. (c) RF OFDM signal. (d) OOK signal. (e) RF OOK signal.

Fig. 6.
Fig. 6.

Constellations of OFDM signal with optical power of -13dBm. (a) BTB before equalization. (b) BTB after equalization. (c) After transmission over 25km SMF. (d) After transmission over 50km SMF.

Fig. 7.
Fig. 7.

BER curves of RF OFDM and OOK signals.

Metrics