Abstract

We report the first long, uniform, optical fibers in which visible light is guided in a single mode by metallic reflection. We describe the fabrication, experiment and characterization of these metallic optical fibers and compare them with theoretical calculations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  3. J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
    [CrossRef]
  4. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007).
    [CrossRef] [PubMed]
  5. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2007).
    [CrossRef] [PubMed]
  6. A Amezcua-Correa, J Yang, and C. E. Finlayson. "Surface-Enhanced Raman Scattering using Microstructured Optical Fiber Substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
    [CrossRef]
  7. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, "Numerical study of guided modes in arrays of metallic nanowires," Opt. Lett. 32, 1647-1649 (2007).
    [CrossRef] [PubMed]
  8. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, "Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,"arXiv:0711.4553, (2007).
  9. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
    [CrossRef]
  10. M. Fokine, L. Nilsson, E. Claesson, A. D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis. "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002).
    [CrossRef]
  11. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  12. I. W. Donald, "Review. Production, properties and applications of microwire and related products," J. Mater. Sci. 22, 2661-2679 (1987).
    [CrossRef]
  13. I. W. Donald and B. L. Metcalfe. "The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process," J. Mater. Sci. 31, 1139-1149 (1996).
    [CrossRef]
  14. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, and L. C Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  15. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
    [CrossRef]
  16. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
    [CrossRef] [PubMed]
  17. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phy. Rev. B 6,4370-4378 (1972).
    [CrossRef]
  18. C. A. Pfeiffer and E. N. Economou, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phy. Rev. B 10, 3038-3051 (1974).
    [CrossRef]

2007

2006

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006).
[CrossRef] [PubMed]

2003

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

2002

M. Fokine, L. Nilsson, E. Claesson, A. D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis. "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, and L. C Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
[CrossRef]

2001

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

1997

1996

I. W. Donald and B. L. Metcalfe. "The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process," J. Mater. Sci. 31, 1139-1149 (1996).
[CrossRef]

1987

I. W. Donald, "Review. Production, properties and applications of microwire and related products," J. Mater. Sci. 22, 2661-2679 (1987).
[CrossRef]

1974

C. A. Pfeiffer and E. N. Economou, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phy. Rev. B 10, 3038-3051 (1974).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phy. Rev. B 6,4370-4378 (1972).
[CrossRef]

Amezcua-Correa, A

A Amezcua-Correa, J Yang, and C. E. Finlayson. "Surface-Enhanced Raman Scattering using Microstructured Optical Fiber Substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Amezcua-Correa, A.

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Berlemont, A. D.

Botten, L. C.

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phy. Rev. B 6,4370-4378 (1972).
[CrossRef]

Claesson, E.

Cox, F. M.

Donald, I. W.

I. W. Donald and B. L. Metcalfe. "The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process," J. Mater. Sci. 31, 1139-1149 (1996).
[CrossRef]

I. W. Donald, "Review. Production, properties and applications of microwire and related products," J. Mater. Sci. 22, 2661-2679 (1987).
[CrossRef]

Economou, E. N.

C. A. Pfeiffer and E. N. Economou, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phy. Rev. B 10, 3038-3051 (1974).
[CrossRef]

Eggleton, B. J.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Fassi Fehri, M.

Finlayson, C. E

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Finlayson, C. E.

A Amezcua-Correa, J Yang, and C. E. Finlayson. "Surface-Enhanced Raman Scattering using Microstructured Optical Fiber Substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Fokine, M.

Gauvreau, B.

Hale, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Hassani, A.

Hayes, J. R.

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phy. Rev. B 6,4370-4378 (1972).
[CrossRef]

Kabashin, A.

Kakarantzas, G.

Kerbage, C.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Kjellberg, L.

Knight, J. C.

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Kobayashi, T

Krummenacher, L.

Kuhlmey, B. T.

Large, M. C. J.

Margulis, W.

Maystre, D.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, and L. C Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
[CrossRef]

McPhedran, R. C.

Metcalfe, B. L.

I. W. Donald and B. L. Metcalfe. "The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process," J. Mater. Sci. 31, 1139-1149 (1996).
[CrossRef]

Morimoto, A.

Nilsson, L.

Pathmanandavel, K.

Pearce, G. J.

Pfeiffer, C. A.

C. A. Pfeiffer and E. N. Economou, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phy. Rev. B 10, 3038-3051 (1974).
[CrossRef]

Poulton, C. G.

Renversez, G.

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
[CrossRef]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, and L. C Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Russell, P. St. J.

Sazio Pier, J. A.

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Scheidemante, T. J.

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Schmidt, M. A.

Skorobogatiy, M. A.

Takahara, J.

Taki, H.

Wang, R.

White, T. P.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, and L. C Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
[CrossRef]

Windeler, R. S.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Yamagishi, S.

Yang, J

A Amezcua-Correa, J Yang, and C. E. Finlayson. "Surface-Enhanced Raman Scattering using Microstructured Optical Fiber Substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Zhang, X.

Adv. Funct. Mater.

A Amezcua-Correa, J Yang, and C. E. Finlayson. "Surface-Enhanced Raman Scattering using Microstructured Optical Fiber Substrates," Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Appl. Phys. Lett.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton. "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

J. Mater. Sci.

I. W. Donald, "Review. Production, properties and applications of microwire and related products," J. Mater. Sci. 22, 2661-2679 (1987).
[CrossRef]

I. W. Donald and B. L. Metcalfe. "The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process," J. Mater. Sci. 31, 1139-1149 (1996).
[CrossRef]

J. Opt. Soc. Am B

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. d. Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am B 19, 2331-2340 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nature

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phy. Rev. B

C. A. Pfeiffer and E. N. Economou, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phy. Rev. B 10, 3038-3051 (1974).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phy. Rev. B 6,4370-4378 (1972).
[CrossRef]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fibers," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

J. A. Sazio Pier, A. Amezcua-Correa, C. E Finlayson, J. R. Hayes, and T. J. Scheidemante, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Other

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, "Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,"arXiv:0711.4553, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron microscope images of metallic optical fiber with one ring of copper rods, where Λ=12µm and the core size is 21µm. a) shows a cleaved fiber end-face with six copper wires protruding from the surface. b) is detail of the six copper wires. c) is a backscattered electron image of a polished fiber sample end-face. d) shows detail of the copper rods in c).

Fig. 2.
Fig. 2.

Experimental measurements of the optical properties of guided modes of metallic optical fibers using a broadband supercontinuum as a light source. a) Measured transmitted spectra of metallic optical fibers as shown in Fig. 1. The transmission spectra are normalized to the input spectrum, so the source spectrum is compensated but the coupling efficiency of the fibers are not. b) The measured intensity distribution of the guided mode, where the metallic optical fiber is as in the SEM images with Λ=12µm and the core size is 21µm. c) The intensity distribution of the fundamental mode, where the metallic optical fiber is as in the SEM images but with Λ=6µm and the core size is 10.5µm. Near-field images at the output face of the metal photonic crystal fiber are shown both with and without the use of a bandpass filter.

Fig. 3.
Fig. 3.

Calculated effective refractive index of index-guided and surface plasmon modes of metallic optical fibers with one ring of copper rods and two rings of air holes. Λ=2µm, dair/Λ=0.5, dcopper/Λ≈0.35.

Fig. 4.
Fig. 4.

Field distribution of Sz of the mode in the metal photonic crystal fiber, which has the same structure as in Fig. 3. a) Mode passing through an anticrossing, following the “fundamental” mode until the n=2 anti-crossing in Fig. 3 and then follows this branch into the plasmon-like regime. Sz is normalized so that the integral over the entire cross section of the fiber is unity. b) Surface plasmon modes above the silica line.

Metrics