Abstract

Using confocal Raman and fluorescence spectroscopic imaging in 3-dimensions, we show direct evidence of inhomogeneous Nd3+ distribution across grain boundaries (GBs) in Nd3+:YAG laser ceramics. It is clearly shown that Nd3+ segregation takes place at GBs leading to self-fluorescence quenching which affects a volume fraction as high as 20%. In addition, we show a clear trend of increasing spatial inhomogeneities in Nd3+ concentration when the doping levels exceeds 3 at%, which is not detected by standard spectrometry techniques. These results could point the way to further improvements in what is already an impressive class of ceramic laser materials.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
    [CrossRef]
  2. A. Ikesue and Y. L. Aung, "Synthesis and Performance of Advanced Ceramic Lasers," J. Am. Ceram. Soc. 89, 1936-1944 (2006).
    [CrossRef]
  3. J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic Lasers: Ready for Action," Photonics Spectra 38, 2-8 (2004).
  4. G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
    [CrossRef]
  5. V. Lupei, N. Pavel, and T. Taira, "1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping," Appl. Phys. Lett. 80, 4309-4312, (2002).
    [CrossRef]
  6. A. Ikesue, K. Kamata, and K. Yoshida, "Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials," J.Am. Ceram. Soc. 79, 1921-1926 (1996).
    [CrossRef]
  7. R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, and T. Narita, "Oscillation spectra and dynamics effects in highly-doped microchip Nd :YAG ceramic laser " Opt. Express 12, 2293-2302 (2004).
    [CrossRef] [PubMed]
  8. K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
    [CrossRef]
  9. T. Sekino and Y. Sogabe, "Progress in the YAG Crystal Growth Technique for Solid State Lasers," Rev. Laser Eng. 21, 827-831 (1995).
    [CrossRef]
  10. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
    [CrossRef]
  11. T. Taira, "RE3+ ion-doped YAG ceramic lasers," IEEE J. Sel. Top. Quantum Electron. 13, 789-809 (2007).
    [CrossRef]
  12. T. Taira, "Ceramic YAG lasers," Comptes Rendus Phys. 8,138-152 (2007).
    [CrossRef]
  13. S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
    [CrossRef]
  14. A. Ikesue and K. Yoshida, "Scattering in Polycrystalline Nd :YAG Lasers," J.Am. Ceram. Soc. 81, 2194-2196 (1998).
    [CrossRef]
  15. S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
    [CrossRef]
  16. J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
    [CrossRef]
  17. K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
    [CrossRef]
  18. Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
    [CrossRef]
  19. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
    [CrossRef]
  20. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
    [CrossRef]
  21. V. Lupei, A. Lupei, and A. Ikesue, "Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation," J. Alloys Compd. 380,61-70 (2004).
    [CrossRef]
  22. U. Aschauer and P. Bowen, "Atomistic Modeling Study of Surface Segregation in Nd :YAG," J.Am. Ceram. Soc. 89, 3812-3816 (2006).
    [CrossRef]
  23. J. W. Cahn, "The impurity drag effect in grain boundary motion," Acta Met. 10789-798 (1962).
    [CrossRef]
  24. A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
    [CrossRef]
  25. S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).
  26. A. E. Siegman, "Effects of Small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 17, 334-337 (1977).
    [CrossRef]
  27. W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]

2007 (3)

T. Taira, "RE3+ ion-doped YAG ceramic lasers," IEEE J. Sel. Top. Quantum Electron. 13, 789-809 (2007).
[CrossRef]

T. Taira, "Ceramic YAG lasers," Comptes Rendus Phys. 8,138-152 (2007).
[CrossRef]

A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
[CrossRef]

2006 (5)

U. Aschauer and P. Bowen, "Atomistic Modeling Study of Surface Segregation in Nd :YAG," J.Am. Ceram. Soc. 89, 3812-3816 (2006).
[CrossRef]

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

A. Ikesue and Y. L. Aung, "Synthesis and Performance of Advanced Ceramic Lasers," J. Am. Ceram. Soc. 89, 1936-1944 (2006).
[CrossRef]

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

2004 (4)

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, and T. Narita, "Oscillation spectra and dynamics effects in highly-doped microchip Nd :YAG ceramic laser " Opt. Express 12, 2293-2302 (2004).
[CrossRef] [PubMed]

V. Lupei, A. Lupei, and A. Ikesue, "Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation," J. Alloys Compd. 380,61-70 (2004).
[CrossRef]

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic Lasers: Ready for Action," Photonics Spectra 38, 2-8 (2004).

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
[CrossRef]

2003 (1)

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

2002 (3)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping," Appl. Phys. Lett. 80, 4309-4312, (2002).
[CrossRef]

2001 (1)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

1998 (1)

A. Ikesue and K. Yoshida, "Scattering in Polycrystalline Nd :YAG Lasers," J.Am. Ceram. Soc. 81, 2194-2196 (1998).
[CrossRef]

1996 (1)

A. Ikesue, K. Kamata, and K. Yoshida, "Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials," J.Am. Ceram. Soc. 79, 1921-1926 (1996).
[CrossRef]

1995 (2)

T. Sekino and Y. Sogabe, "Progress in the YAG Crystal Growth Technique for Solid State Lasers," Rev. Laser Eng. 21, 827-831 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

1988 (1)

1977 (2)

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

A. E. Siegman, "Effects of Small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 17, 334-337 (1977).
[CrossRef]

1972 (1)

S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
[CrossRef]

1968 (1)

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

1962 (1)

J. W. Cahn, "The impurity drag effect in grain boundary motion," Acta Met. 10789-798 (1962).
[CrossRef]

Akhmetov, S. F.

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

Akhmetova, G. L.

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

And, S.

K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
[CrossRef]

Aschauer, U.

U. Aschauer and P. Bowen, "Atomistic Modeling Study of Surface Segregation in Nd :YAG," J.Am. Ceram. Soc. 89, 3812-3816 (2006).
[CrossRef]

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

A. Ikesue and Y. L. Aung, "Synthesis and Performance of Advanced Ceramic Lasers," J. Am. Ceram. Soc. 89, 1936-1944 (2006).
[CrossRef]

Bauman, R. P.

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

Bowen, P.

U. Aschauer and P. Bowen, "Atomistic Modeling Study of Surface Segregation in Nd :YAG," J.Am. Ceram. Soc. 89, 3812-3816 (2006).
[CrossRef]

Byer, R. L.

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic Lasers: Ready for Action," Photonics Spectra 38, 2-8 (2004).

Cahn, J. W.

J. W. Cahn, "The impurity drag effect in grain boundary motion," Acta Met. 10789-798 (1962).
[CrossRef]

Castillo, V.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

Chang, I. F.

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

Chen, Y. F.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Chiang, H. P.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Crandall, P. B.

S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
[CrossRef]

Digonnet, M.

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic Lasers: Ready for Action," Photonics Spectra 38, 2-8 (2004).

Dumm, J. Q.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

Espinosa, G. P.

S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
[CrossRef]

Fullmer, L. D.

S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
[CrossRef]

Gazizova, G. A.

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

Geller, S.

S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
[CrossRef]

Georgescu, S.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

Hu, L. J.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Hurrell, J. P.

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

Ikesue, A.

A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
[CrossRef]

A. Ikesue and Y. L. Aung, "Synthesis and Performance of Advanced Ceramic Lasers," J. Am. Ceram. Soc. 89, 1936-1944 (2006).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, "Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation," J. Alloys Compd. 380,61-70 (2004).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

A. Ikesue and K. Yoshida, "Scattering in Polycrystalline Nd :YAG Lasers," J.Am. Ceram. Soc. 81, 2194-2196 (1998).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, "Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials," J.Am. Ceram. Soc. 79, 1921-1926 (1996).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Kamata, K.

A. Ikesue, K. Kamata, and K. Yoshida, "Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials," J.Am. Ceram. Soc. 79, 1921-1926 (1996).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

Kaminskii, A. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
[CrossRef]

Kanellis, G.

K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
[CrossRef]

Kawai, R.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Ko, J.

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

Kochawattana, S.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

Kovalenko, V. S.

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
[CrossRef]

Kurimira, S.

Lee, S. H.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

Lim, P. K.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Lim, S. J.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Lin, C.

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, "Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation," J. Alloys Compd. 380,61-70 (2004).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, "Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation," J. Alloys Compd. 380,61-70 (2004).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping," Appl. Phys. Lett. 80, 4309-4312, (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

Messing, G. L

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

Messing, G. L.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

Mirenkova, T. F.

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

Mitra, S. S.

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

Miyasaka, Y.

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, and T. Narita, "Oscillation spectra and dynamics effects in highly-doped microchip Nd :YAG ceramic laser " Opt. Express 12, 2293-2302 (2004).
[CrossRef] [PubMed]

Narita, T.

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, and T. Narita, "Oscillation spectra and dynamics effects in highly-doped microchip Nd :YAG ceramic laser " Opt. Express 12, 2293-2302 (2004).
[CrossRef] [PubMed]

Ohtomo, T.

Otsuka, K.

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, and T. Narita, "Oscillation spectra and dynamics effects in highly-doped microchip Nd :YAG ceramic laser " Opt. Express 12, 2293-2302 (2004).
[CrossRef] [PubMed]

Papagelis, K.

K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
[CrossRef]

Pavel, N.

V. Lupei, N. Pavel, and T. Taira, "1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping," Appl. Phys. Lett. 80, 4309-4312, (2002).
[CrossRef]

Porto, S. P.

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

Quarles, G.

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

Risk, W. P.

Sato, Y.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

Sekino, T.

T. Sekino and Y. Sogabe, "Progress in the YAG Crystal Growth Technique for Solid State Lasers," Rev. Laser Eng. 21, 827-831 (1995).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "Effects of Small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 17, 334-337 (1977).
[CrossRef]

Sogabe, Y.

T. Sekino and Y. Sogabe, "Progress in the YAG Crystal Growth Technique for Solid State Lasers," Rev. Laser Eng. 21, 827-831 (1995).
[CrossRef]

Taira, T.

T. Taira, "RE3+ ion-doped YAG ceramic lasers," IEEE J. Sel. Top. Quantum Electron. 13, 789-809 (2007).
[CrossRef]

T. Taira, "Ceramic YAG lasers," Comptes Rendus Phys. 8,138-152 (2007).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping," Appl. Phys. Lett. 80, 4309-4312, (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, S. Kurimira, and A. Ikesue "High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics," J. Opt. Soc. Am. B 19,360-368 (2002).
[CrossRef]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

Tse, W.S.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Ueda, K.

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
[CrossRef]

Ves, S.

K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
[CrossRef]

Wisdom, J.

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic Lasers: Ready for Action," Photonics Spectra 38, 2-8 (2004).

Yamaga, Y.

A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
[CrossRef]

Yamamoto, T.

A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
[CrossRef]

Yang, Y. J.

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

Yoshida, K.

A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

A. Ikesue and K. Yoshida, "Scattering in Polycrystalline Nd :YAG Lasers," J.Am. Ceram. Soc. 81, 2194-2196 (1998).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, "Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials," J.Am. Ceram. Soc. 79, 1921-1926 (1996).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

Acta Met. (1)

J. W. Cahn, "The impurity drag effect in grain boundary motion," Acta Met. 10789-798 (1962).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L Messing, " Progress in Ceramic Lasers," Annu. Rev. Mater. Sci. 36,397-429 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

V. Lupei, N. Pavel, and T. Taira, "1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping," Appl. Phys. Lett. 80, 4309-4312, (2002).
[CrossRef]

K. Otsuka, T. Narita, Y. Miyasaka, C. Lin, and J. Ko, "Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model," Appl. Phys. Lett. 89, 081117 (2006).
[CrossRef]

Comptes Rendus Phys. (1)

T. Taira, "Ceramic YAG lasers," Comptes Rendus Phys. 8,138-152 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. A. Kumar, J. Lu, A. A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani, and N. V. Unnikrishnan "Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics," IEEE J. Quantum Electron. 40,747-758 (2004).
[CrossRef]

A. E. Siegman, "Effects of Small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 17, 334-337 (1977).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, "RE3+ ion-doped YAG ceramic lasers," IEEE J. Sel. Top. Quantum Electron. 13, 789-809 (2007).
[CrossRef]

J. Alloys Compd. (1)

V. Lupei, A. Lupei, and A. Ikesue, "Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation," J. Alloys Compd. 380,61-70 (2004).
[CrossRef]

J. Am. Ceram. Soc. (3)

A. Ikesue, K. Yoshida, T. Yamamoto, and Y. Yamaga, "Optical Scattering Centers in polycrystalline Nd:YAG Laser," J. Am. Ceram. Soc. 80, 1517-1522 (2007).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J. Am. Ceram. Soc. 78, 1033-1040 (1995).
[CrossRef]

A. Ikesue and Y. L. Aung, "Synthesis and Performance of Advanced Ceramic Lasers," J. Am. Ceram. Soc. 89, 1936-1944 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Raman Spectrosc. (1)

Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W.S. Tse, "Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method," J. Raman Spectrosc. 34, 882-885 (2003).
[CrossRef]

J.Am. Ceram. Soc. (4)

S. H. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, "Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic," J.Am. Ceram. Soc. 89, 1945-1950 (2006).
[CrossRef]

A. Ikesue and K. Yoshida, "Scattering in Polycrystalline Nd :YAG Lasers," J.Am. Ceram. Soc. 81, 2194-2196 (1998).
[CrossRef]

A. Ikesue, K. Kamata, and K. Yoshida, "Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials," J.Am. Ceram. Soc. 79, 1921-1926 (1996).
[CrossRef]

U. Aschauer and P. Bowen, "Atomistic Modeling Study of Surface Segregation in Nd :YAG," J.Am. Ceram. Soc. 89, 3812-3816 (2006).
[CrossRef]

Mater. Res. Bull. (1)

S. Geller, L. D. Fullmer, P. B. Crandall, and G. P. Espinosa, "Thermal-expansion of some garnets," Mater. Res. Bull. 7, 1219-1224 (1972).
[CrossRef]

Opt. Express (1)

Photonics Spectra (1)

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic Lasers: Ready for Action," Photonics Spectra 38, 2-8 (2004).

Phys. Rev (1)

J. P. Hurrell, S. P. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, "Optical Phonons of Yttrium Aluminum Garnet," Phys. Rev 173, 851-856 (1968).
[CrossRef]

Phys. Rev. B (1)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, "The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics," Phys. Rev. B 64,092102 (2001).
[CrossRef]

Phys. Status Solidi B (1)

K. Papagelis, G. Kanellis, S. Ves, AndG. A. Kourouklis, "Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12)," Phys. Status Solidi B 233, 134-150 (2002).
[CrossRef]

Rev. Laser Eng. (1)

T. Sekino and Y. Sogabe, "Progress in the YAG Crystal Growth Technique for Solid State Lasers," Rev. Laser Eng. 21, 827-831 (1995).
[CrossRef]

Russ. J. Inorg. Chem. (1)

S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, "Rare earth metal aluminum garnets," Russ. J. Inorg. Chem. 22, 1613-1615, (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Detail of the Room Temperature (RT) Raman spectra recorded in confocal geometry at a depth of 10 µm below the surface at three different spatial regions in a transparent 1 at% Nd3+ doped YAG ceramic. The excitation wavelength was 488 nm. The symmetry of the different Raman modes has also been included for the sake of clarity. (b) Lateral Raman image (x-y scan; 85×85 µm) obtained in confocal geometry at a depth of 10 µm below the surface when the center of mass was fixed in the spectral region 360–405 cm-1. Note that at every pixel in the Raman image, an entire Raman spectrum was collected. (c) Lateral Raman image (x-y scan; 85×85 µm) obtained by integrating over the 243–273 cm-1 spectral region. The scanned area is the same as (b). (d) Raman shift of the T2g mode as a function of Nd3+ concentration.

Fig. 2.
Fig. 2.

(a) Three dimensional lateral fluorescence image (x-y scan; 85×85 µm) obtained in confocal geometry at a depth of 2 µm below the surface by integrating over the whole emission spectrum corresponding to the 4F7/2:4S3/24I9/2 and 4F3/24I9/2 electronic transitions of Nd3+ ions YAG. The Nd3+ concentration was 1 at% (b) Green line: detail of the most intense line in the emission spectrum obtained subtracting the emission spectra from grains and GBs. For the illustration purposes, it has been multiplied by 20. Blue and red lines: emission spectra collected at grain and GB, respectively. (c) Confocal fluorescence image obtained when the contribution of the Nd3+ pairs to the total spectrum is analyzed. Note that only the emission area in the 867.7–868.5 nm (M1-Nd3+ pairs) and/or 869.8–870.6 (M2-Nd3+ pairs) spectral regions was considered. (d) Relative changes obtained in the total intensity of both, M1-Nd3+ pairs (red line, right y-axis) and regular isolated Nd3+ ions (blue line, left y-axis) when crossing a single grain boundary.

Fig. 3.
Fig. 3.

Three dimensional lateral fluorescence image (x-y scan; 85×85 µm) obtained in confocal geometry at a depth of 2 µm below the surface by integrating over the whole emission corresponding to the 4F7/2:4S3/24I9/2 and 4F3/24I9/2 electronic transitions of Nd3+ ions YAG for three different Nd3+ concentrations: 2.3 at% (left side), 3.5 at% (center) and 5.2 at% (right side).

Fig. 4.
Fig. 4.

Partially bottom view at a fixed elevation of the 3D isosurface spatial reconstruction of GB surfaces obtained from the whole emission spectra area of Nd3+ ions in YAG. Nd3+ concentration was 1 at%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = 18 T 1 u + 3 A 1 g + 8 E g + 14 T 2 g + 5 A 2 g + 5 A 1 u + 5 A 2 u + 10 E u + 14 T 1 g + 16 T 2 u

Metrics