Abstract

We use broadband frequency-resolved optical gating (FROG) and cross-correlation FROG (XFROG) techniques to study the details of the supercontinuum generated in extruded soft glass SF6 photonic crystal fibers pumped with envelope-modulated 100 fs pulses at telecom wavelengths. Strong temporal jitter of solitons is observed with highly non-Gaussian statistics, which is related to the statistics of the pump pulse envelope shape fluctuations. The ripples present on the input pulse seed the modulation instability at high pump powers, affecting soliton fission. Numerical modeling confirms strong sensitivity of the soliton fission process to the presence of ripples on the pump pulse envelope.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. von der Linde,"Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217 (1986).
    [CrossRef]
  2. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, "Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber," Opt. Fiber Technol. 4, 215-223 (1998).
    [CrossRef]
  3. M. Bellini, T. W. Hansch, "Phase-locked white-light continuum pulses: toward a universal optical frequencycomb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
    [CrossRef]
  4. T. M. Fortier, J. Ye, and S. T. Cundiff, "Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase," Opt. Lett. 27, 445-447 (2002).
    [CrossRef]
  5. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. B 77, 269-277 (2003).
    [CrossRef]
  6. J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, "Excess noise generation during spectral broadening in a microstructured fiber," Appl. Phys. B 77, 279-284 (2003).
    [CrossRef]
  7. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
    [CrossRef] [PubMed]
  8. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
    [CrossRef] [PubMed]
  9. F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered singlemode optical fibers," Opt. Express 12, 347-353 (2004).
    [CrossRef] [PubMed]
  10. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, "Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre," Appl. Phys. B 81, 265-269 (2005).
    [CrossRef]
  11. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, "Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber," J. Opt. Soc. Am. B 22, 1453-1460 (2005).
    [CrossRef]
  12. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature (London) 450, 1054-1058 (2007).
    [CrossRef] [PubMed]
  13. J. M. Dudley, G. Genty, and B. J. Eggleton "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).
  15. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  16. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Broad bandwidths from frequency-shifting solitons in fibers," Opt. Lett. 14, 370-372 (1989).
    [CrossRef] [PubMed]
  17. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
    [CrossRef]
  18. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, "Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating," Opt. Fiber Technol. 4, 237-265 (1998).
    [CrossRef]
  19. F. G. Omenetto, B. P. Luce, D. Yarotski, and A. J. Taylor, "Observation of chirped soliton dynamics at ⌊ = 1.55 m in a single-mode optical fiber with frequency-resolved optical gating," Opt. Lett. 24,1392-1394 (1999).
    [CrossRef]
  20. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O‘Shea, A. P. Shreenath, and R. Trebino, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  21. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O‘Shea, R. Trebino, S. Coen, and R. S. Windeler, "Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
    [PubMed]
  22. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 2, 11969-1980 (2004).
    [CrossRef]
  23. S. N. Bagayev, V. I. Denisov, V. F. Zakhar’yash, V. M. Klement’ev, S. M. Kobtsev, I. I. Korel’, S. A. Kuznetsov, S. V. Kukarin, V. S. Pivtsov, S. V. Smirnov, and N. V. Fateev, "Spectral and temporal characteristics of a supercontinuum in tapered optical fibres," Quantum Electron. 34, 1107-1115 (2004).
    [CrossRef]
  24. S. O. Konorov, D. A. Akimov, A. A. Ivanov, E. E. Serebryannikov, M. V. Alfimov, K. V. Dukelskii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondratev, and A. M. Zheltikov, "Spectrally and temporally isolated Raman soliton features in microstructure fibers visualized by cross-correlation frequency-resolved optical gating," Appl. Phys. B 79289-292 (2004).
    [CrossRef]
  25. V. V. Ravi Kanth Kumar, A. K. George,W. H. Reeves, J. C. Knight, and P. St. J. Russell, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).
    [PubMed]
  26. A. Efimov and A. J. Taylor, "Cross-correlation frequency-resolved optical gating for studying ultrashort-pulse nonlinear dynamics in arbitrary fibers," Appl. Opt. 44, 4408-4411 (2005).
    [CrossRef] [PubMed]
  27. D. V. Skryabin, and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
    [CrossRef]
  28. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 m in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006).
    [CrossRef] [PubMed]
  29. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
    [CrossRef] [PubMed]
  30. A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, Opt. Lett. 31, 1624-1626 (2006).
    [CrossRef] [PubMed]
  31. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
    [CrossRef] [PubMed]
  32. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasinondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
    [CrossRef] [PubMed]
  33. A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, "Bound soliton pairs in photonic crystal fiber," Opt. Express 15, 1653-1662 (2007).
    [CrossRef] [PubMed]
  34. A. Efimov, A. J. Taylor, F. G. Omenetto, and E. Vanin, "Adaptive control of femtosecond soliton self-frequency shift in fibers," Opt. Lett. 29, 271-273 (2004).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (4)

2005 (5)

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, "Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre," Appl. Phys. B 81, 265-269 (2005).
[CrossRef]

I. Zeylikovich, V. Kartazaev, and R. R. Alfano, "Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber," J. Opt. Soc. Am. B 22, 1453-1460 (2005).
[CrossRef]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

A. Efimov and A. J. Taylor, "Cross-correlation frequency-resolved optical gating for studying ultrashort-pulse nonlinear dynamics in arbitrary fibers," Appl. Opt. 44, 4408-4411 (2005).
[CrossRef] [PubMed]

D. V. Skryabin, and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

2004 (6)

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, and E. Vanin, "Adaptive control of femtosecond soliton self-frequency shift in fibers," Opt. Lett. 29, 271-273 (2004).
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 2, 11969-1980 (2004).
[CrossRef]

S. N. Bagayev, V. I. Denisov, V. F. Zakhar’yash, V. M. Klement’ev, S. M. Kobtsev, I. I. Korel’, S. A. Kuznetsov, S. V. Kukarin, V. S. Pivtsov, S. V. Smirnov, and N. V. Fateev, "Spectral and temporal characteristics of a supercontinuum in tapered optical fibres," Quantum Electron. 34, 1107-1115 (2004).
[CrossRef]

S. O. Konorov, D. A. Akimov, A. A. Ivanov, E. E. Serebryannikov, M. V. Alfimov, K. V. Dukelskii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondratev, and A. M. Zheltikov, "Spectrally and temporally isolated Raman soliton features in microstructure fibers visualized by cross-correlation frequency-resolved optical gating," Appl. Phys. B 79289-292 (2004).
[CrossRef]

F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered singlemode optical fibers," Opt. Express 12, 347-353 (2004).
[CrossRef] [PubMed]

2003 (4)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. B 77, 269-277 (2003).
[CrossRef]

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, "Excess noise generation during spectral broadening in a microstructured fiber," Appl. Phys. B 77, 279-284 (2003).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

2002 (4)

2000 (1)

1999 (1)

1998 (2)

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, "Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating," Opt. Fiber Technol. 4, 237-265 (1998).
[CrossRef]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, "Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

1989 (2)

1986 (1)

D. von der Linde,"Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (5)

S. O. Konorov, D. A. Akimov, A. A. Ivanov, E. E. Serebryannikov, M. V. Alfimov, K. V. Dukelskii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondratev, and A. M. Zheltikov, "Spectrally and temporally isolated Raman soliton features in microstructure fibers visualized by cross-correlation frequency-resolved optical gating," Appl. Phys. B 79289-292 (2004).
[CrossRef]

D. von der Linde,"Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217 (1986).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. B 77, 269-277 (2003).
[CrossRef]

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, "Excess noise generation during spectral broadening in a microstructured fiber," Appl. Phys. B 77, 279-284 (2003).
[CrossRef]

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, "Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre," Appl. Phys. B 81, 265-269 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (London) (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature (London) 450, 1054-1058 (2007).
[CrossRef] [PubMed]

Opt. Express (9)

J. M. Dudley, G. Genty, and B. J. Eggleton "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008).
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered singlemode optical fibers," Opt. Express 12, 347-353 (2004).
[CrossRef] [PubMed]

V. V. Ravi Kanth Kumar, A. K. George,W. H. Reeves, J. C. Knight, and P. St. J. Russell, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).
[PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 m in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006).
[CrossRef] [PubMed]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O‘Shea, R. Trebino, S. Coen, and R. S. Windeler, "Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
[PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasinondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
[CrossRef] [PubMed]

A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, "Bound soliton pairs in photonic crystal fiber," Opt. Express 15, 1653-1662 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol. (2)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, "Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, "Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating," Opt. Fiber Technol. 4, 237-265 (1998).
[CrossRef]

Opt. Lett. (8)

F. G. Omenetto, B. P. Luce, D. Yarotski, and A. J. Taylor, "Observation of chirped soliton dynamics at ⌊ = 1.55 m in a single-mode optical fiber with frequency-resolved optical gating," Opt. Lett. 24,1392-1394 (1999).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O‘Shea, A. P. Shreenath, and R. Trebino, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

M. Bellini, T. W. Hansch, "Phase-locked white-light continuum pulses: toward a universal optical frequencycomb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
[CrossRef]

T. M. Fortier, J. Ye, and S. T. Cundiff, "Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase," Opt. Lett. 27, 445-447 (2002).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, and E. Vanin, "Adaptive control of femtosecond soliton self-frequency shift in fibers," Opt. Lett. 29, 271-273 (2004).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, Opt. Lett. 31, 1624-1626 (2006).
[CrossRef] [PubMed]

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Broad bandwidths from frequency-shifting solitons in fibers," Opt. Lett. 14, 370-372 (1989).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. V. Skryabin, and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St. J. Russell, "Interaction of an Optical Soliton with a Dispersive Wave," Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Quantum Electron. (1)

S. N. Bagayev, V. I. Denisov, V. F. Zakhar’yash, V. M. Klement’ev, S. M. Kobtsev, I. I. Korel’, S. A. Kuznetsov, S. V. Kukarin, V. S. Pivtsov, S. V. Smirnov, and N. V. Fateev, "Spectral and temporal characteristics of a supercontinuum in tapered optical fibres," Quantum Electron. 34, 1107-1115 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Phase matching for non-collinear sum-frequency generation of fixed wavelength reference pulse at 1550 nm and variable wavelength signal pulse in a 200µm thick BBO crystal. Density plots are shown on the left for crystal cut angle vs. signal wavelength. Dashed lines show most optimal cut angles for obtaining large phase-matching bandwidths, and corresponding phase-matching curves are plotted on the right. (a) and (b): Type 2: osig +eref eSF SFG process; (c) and (d): Type 1: osig +oref eSF process; (d) and (f): Type 2: oref +esig eSF process. Vertical dashed line indicates λ=1.55 µm central wavelength in our experiments.

Fig. 2.
Fig. 2.

Numerical, (a), and experimental, (b), XFROG spectrograms of a supercontinuum pulse at the output of 11 cm long piece of SF6 PCF pumped with 100 fs pulses at 1550 nm. Lower axis is sum-frequency and upper axis in (b) is fundamental wavelength of the signal. Color scale is logarithmic covering 30 dB of sum-frequency signal intensity. Inset shows the SEM image of the fiber tip.

Fig. 3.
Fig. 3.

Experimental FROG traces taken at the output of the same SF6 PCF sample as in Fig. 2 for “low” input average power of 40 mW (a) and “high” power of 100 mW (b). The blue portion of the SC was removed with a silicon filter so that only solitonic part of SC is shown. Color scale is logarithmic spanning 30 dB of sum-frequency signal intensity.

Fig. 4.
Fig. 4.

Sequence of experimental XFROG spectrograms at the output of SF6 PCF, as in Fig. 2. Only solitonic part of SC shown. Multiple soliton formation is observed. Soliton timing jitter onset at 80 mW. Color scale is logarithmic. Horizontal axis is sum-frequency wavelength of the upconverted signal. For each panel the average input power is indicated, not adjusted for ~30% coupling efficiency.

Fig. 5.
Fig. 5.

Modeling results for the SC generated with smooth (red curves) and rippled (black curves) pump pulses in SF6 PCF used in the experiments: (a) temporal intensity at the PCF output; (b) details of the temporal envelope of the pump pulses; (c) spectral intensity at the output; (d) details of spectral content of the input pulses.

Fig. 6.
Fig. 6.

Spectrum of the Opal system measured with high dynamic range. Noisy sidelobes are present on both sides of the main spectrum at ~10-3 level. Insets show spectrally-resolved photodiode signals at the sidelobe and at the central wavelength. Warmer colors correspond to increased occurrences.

Fig. 7.
Fig. 7.

Solitonic part of the SC spectrum. Two redmost solitons are clearly identifiable. Insets show spectrally-resolved photodiode signals at the wings of the soltions’ spectra. Warmer colors correspond to increased occurrences.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 0 crit = β 2 4 γ T 0 2 ,

Metrics