Abstract

We present fiber-based polarization-sensitive swept-source optical coherence tomography (SS-OCT) based on continuous source polarization modulation. The light source is a frequency swept laser centered at 1.31 µm with a scanning rate of 20 kHz. The incident polarization is modulated by a resonant electro-optic modulator at 33.3 MHz, which is one-third of the data acquisition frequency. The zeroth- and first-order harmonic components of the OCT signals with respect to the polarization modulation frequency have the polarimetric information of the sample. By algebraic and matrix calculations of the signals, this system can measure the depth-resolved Jones matrices of the sample with a single wavelength scan. The phase fluctuations of the starting trigger of wavelength scan and the polarization modulation are cancelled by monitoring the OCT phase of a calibration mirror inserted into the sample arm. We demonstrate the potential of the system by the measurement of chicken breast muscle and the volumetric measurement of an in vivo human anterior eye segment. The phase retardation image shows an additional contrast in the fibrous tissue such as the collagen fiber in the trabecular meshwork and sclera.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
    [CrossRef] [PubMed]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  4. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
    [CrossRef] [PubMed]
  5. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  6. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  7. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2953.
    [CrossRef] [PubMed]
  8. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 m wavelength," Opt. Express 11, 3598-3604 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-26-3598.
    [CrossRef] [PubMed]
  9. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  10. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  11. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  12. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
    [CrossRef] [PubMed]
  13. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004).
    [CrossRef] [PubMed]
  14. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
    [PubMed]
  15. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," J. Biomed. Opt. 7, 618-627 (2002).
    [CrossRef] [PubMed]
  16. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-4-1547.
    [CrossRef] [PubMed]
  17. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-9-13-780.
    [CrossRef] [PubMed]
  18. G. Yao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  19. S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002).
    [CrossRef]
  20. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  21. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
    [CrossRef]
  22. E. G¨otzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10,217-10,229 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-25-10217.
  23. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  24. J. E. Roth, J. A. Kozak, S. Yazdanfar, A.M. Rollins, and J. A. Izatt, "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).
    [CrossRef]
  25. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
    [CrossRef] [PubMed]
  26. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Optical-fiber-based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).
    [CrossRef] [PubMed]
  27. S. Jiao, M. Todorovi’c, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005).
    [CrossRef] [PubMed]
  28. J. Zhang, W. Jung, J. Nelson, and Z. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-24-6033.
    [CrossRef] [PubMed]
  29. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-3931.
    [CrossRef] [PubMed]
  30. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).
  31. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-14-6502.
    [CrossRef] [PubMed]
  32. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1096.
    [CrossRef] [PubMed]
  33. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
    [CrossRef] [PubMed]
  34. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-26-10652.
    [CrossRef]
  35. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5483.
    [CrossRef] [PubMed]
  36. M. Pierce, M. Shishkov, B. Park, N. Nassif, B. Bouma, G. Tearney, and J. de Boer, "Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography," Opt. Express 13, 5739-5749 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5739.
    [CrossRef] [PubMed]
  37. M. Pircher, E. Gotzinger, B. Baumann, and C. K. Hitzenberger, "Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina," J. Biomed. Opt. 12, 041210 (2007).
    [CrossRef] [PubMed]
  38. J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-19-7449.
    [CrossRef] [PubMed]
  39. M. Todorovi’c, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biologicalsamples in the presence of diattenuation by use of Muelleroptical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
    [CrossRef] [PubMed]
  40. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
    [CrossRef] [PubMed]
  41. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, "Spectrally balanced detection for optical frequency domain imaging," Opt. Express 15, 16,390-16,399 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16390.
    [CrossRef]

2008 (2)

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1096.
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Pircher, E. Gotzinger, B. Baumann, and C. K. Hitzenberger, "Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina," J. Biomed. Opt. 12, 041210 (2007).
[CrossRef] [PubMed]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, "Spectrally balanced detection for optical frequency domain imaging," Opt. Express 15, 16,390-16,399 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16390.
[CrossRef]

2006 (3)

2005 (7)

J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-19-7449.
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-26-10652.
[CrossRef]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5483.
[CrossRef] [PubMed]

M. Pierce, M. Shishkov, B. Park, N. Nassif, B. Bouma, G. Tearney, and J. de Boer, "Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography," Opt. Express 13, 5739-5749 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5739.
[CrossRef] [PubMed]

E. G¨otzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10,217-10,229 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-25-10217.

S. Jiao, M. Todorovi’c, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-3931.
[CrossRef] [PubMed]

2004 (8)

J. Zhang, W. Jung, J. Nelson, and Z. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-24-6033.
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

M. Todorovi’c, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biologicalsamples in the presence of diattenuation by use of Muelleroptical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

2003 (7)

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2953.
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 m wavelength," Opt. Express 11, 3598-3604 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-26-3598.
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
[CrossRef] [PubMed]

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Optical-fiber-based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (3)

2000 (1)

1999 (1)

1997 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," J. Biomed. Opt. 7, 618-627 (2002).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, B. Baumann, and C. K. Hitzenberger, "Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina," J. Biomed. Opt. 12, 041210 (2007).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Rheumatol. (1)

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001).
[PubMed]

Opt. Express (16)

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-26-10652.
[CrossRef]

E. G¨otzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10,217-10,229 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-25-10217.

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-9-13-780.
[CrossRef] [PubMed]

M. Pierce, M. Shishkov, B. Park, N. Nassif, B. Bouma, G. Tearney, and J. de Boer, "Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography," Opt. Express 13, 5739-5749 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5739.
[CrossRef] [PubMed]

J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-19-7449.
[CrossRef] [PubMed]

J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-4-1547.
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-14-6502.
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-24-6033.
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-3931.
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5483.
[CrossRef] [PubMed]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, "Spectrally balanced detection for optical frequency domain imaging," Opt. Express 15, 16,390-16,399 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16390.
[CrossRef]

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1096.
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2953.
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 m wavelength," Opt. Express 11, 3598-3604 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-26-3598.
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
[CrossRef] [PubMed]

Opt. Lett. (13)

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

M. Todorovi’c, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biologicalsamples in the presence of diattenuation by use of Muelleroptical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Optical-fiber-based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. E. Roth, J. A. Kozak, S. Yazdanfar, A.M. Rollins, and J. A. Izatt, "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).
[CrossRef]

Phys. Med. Biol. (1)

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).

Supplementary Material (2)

» Media 1: AVI (3728 KB)     
» Media 2: AVI (14630 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the system. SS: frequency swept laser source, PC: in-line polarization controller, LP: linear polarizer, EOM: electro-optic modulator, D: photodetector, BS: nonpolarizing beamsplitter, PMF: polarization-maintaining fiber, PMC: polarization-maintaining coupler, PBS: in-line fiber-optic polarizing beamsplitter, H ch.: balanced photoreceiver of horizontally polarized light channel, V ch.: balanced photoreceiver of vertically polarized light channel.

Fig. 2.
Fig. 2.

Diagram of the detected signal after Fourier transform.

Fig. 3.
Fig. 3.

Flowchart of the data processing. Since the process of the vertically polarized channel is almost the same as that of horizontally polarized channel, its description is abbreviated.

Fig. 4.
Fig. 4.

(a) Double-pass phase retardation of the QWP, (b) double-pass diattenuation of the LP, and (c) relative orientation of the QWP and LP.

Fig. 5.
Fig. 5.

Intensity (upper), phase retardation (middle) and orientation (lower) images of the chicken breast muscle. The image size is 1.6 cm (transversal) ×4.0 mm (axial) in air. The phase retardation image and the orientation image are indicated in gray scale from black (0°) to white (180° and 90°, respectively).

Fig. 6.
Fig. 6.

Intensity (upper left), phase retardation (upper right) and orientation (lower right) images of the in vivo human anterior eye segment. The size of the images was 5.0 mm ×3.9 mm in air. (14.6 MB version). [Media 1][Media 2]

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

φ = A 0 sin ( ω m t ) ,
( cos φ 2 i sin φ 2 i sin φ 2 cos φ 2 ) .
( H i V i ) = ( i sin φ 2 cos φ 2 ) .
J all = J out J sam J in = ( j 1 , 1 j 1 , 2 j 2 , 1 j 2 , 2 ) ,
( H sam V sam ) = J all ( H i V i ) = ( j 1 , 2 cos φ 2 + i j 1 , 1 sin φ 2 j 2 , 2 cos φ 2 + i j 2 , 1 sin φ 2 )
E ref = ( H ref V ref ) = ( H r V r ) e i φ 2 ,
I h ( t ) = H ref 2 + H sam 2 + H ref ( t ) H sam * ( t ) + c . c . ,
I ~ h ( t ~ ) = 𝓕 [ H ref ( t ) H sam * ( t ) ] = H r 2 { 𝓕 [ j 1 , 2 * j 1 , 1 * ] + 𝓕 [ j 1 , 2 * + j 1 , 1 * ] * 𝓕 [ e i φ ] } ,
𝓕 [ e i φ ] = l = 0 [ J 2 l ( A 0 ) { δ ( k 2 l ω m ) + δ ( k + 2 l ω m ) }
J 2 l + 1 ( A 0 ) { δ ( k ( 2 l + 1 ) ω m ) + δ ( k + ( 2 l + 1 ) ω m ) } ] ,
{ sin [ φ ( t ) ] = l = 0 2 J 2 l + 1 ( A 0 ) sin [ ( 2 l + 1 ) ω m t ] cos [ φ ( t ) ] = J 0 ( A 0 ) + l = 1 2 J 2 l ( A 0 ) cos [ ( 2 l ) ω m t ]
I ~ h 0 ( z ) = H r 2 ( j 1 , 2 * j 1 , 1 * ) ,
I ~ h 1 ( z ) = J 1 ( A 0 ) H r 2 ( j 1 , 2 * + j 1 , 1 * ) ,
H r j 1 , 1 * = ( I ~ h 0 + I ~ h 1 J 1 ( A 0 ) ) ,
H r j 1 , 2 * = I ~ h 0 I ~ h 1 J 1 ( A 0 ) .
V r j 2 , 1 * = ( I ~ v 0 + I ~ v 1 J 1 ( A 0 ) ) ,
V r j 2 , 2 * = I ~ v 0 I ~ v 1 J 1 ( A 0 ) .
J measured = ( H r * 0 0 V r * ) ( ( I ~ h 0 * + I ~ h 1 * J 1 ( A 0 ) ) I ~ h 0 * I ~ h 1 * J 1 ( A 0 ) ( I ~ v 0 * + I ~ v 1 * J 1 ( A 0 ) ) I ~ v 0 * I ~ v 1 * J 1 ( A 0 ) ) .
J offset = ( 1 0 0 e i γ ) ,
J measured = J offset J all .
J measured = e i 2 α z ε ( n ) J measured = e i 2 α z ε ( n ) J offset J all .
φ = A 0 sin ( ω m t δ ( n ) ) ,
I ˜ h ( z ) = H r 2 { 𝓕 [ j 1,2 * j 1,1 * ] + e i δ ( n ) 𝓕 [ j 1,2 * + j 1,1 * ] * 𝓕 [ e i φ ] } .
J measured = e i 2 α z ε ( n ) J offset ( ( I ˜ h 0 * + e i δ ( n ) I ˜ h 1 * J 1 ( A 0 ) ) I ˜ h 0 * + e i δ ( n ) I ˜ h 1 * J 1 ( A 0 ) ( I ˜ v 0 * + e i δ ( n ) I ˜ v 1 * J 1 ( A 0 ) ) I ˜ v 0 * + e i δ ( n ) I ˜ v 1 * J 1 ( A 0 ) )
= e i 2 α z ε ( n ) J offset J all J offset 2 ,
J offset 2 = 1 2 ( e i δ ( n ) + 1 e i δ ( n ) 1 e i δ ( n ) 1 e i δ ( n ) + 1 ) .
e i { δ ( n ) δ ( 0 ) } = { e i δ ( n ) e i 2 α z ε ( n ) I ˜ h 1 e i 2 α z ε ( n ) I ˜ h 0 } { e i δ ( 0 ) e i 2 α z ε ( 0 ) I ˜ h 1 e i 2 α z ε ( 0 ) I ˜ h 0 } .
1 e i { δ ( n ) δ ( 0 ) } e i δ ( n ) e i 2 α z ε ( n ) I ˜ h 1 = e i δ ( 0 ) e i 2 α z ε ( n ) I ˜ h 1 .

Metrics