Abstract

In a recent article [Opt. Express 15, 14650 (2007)] Lee et al. claimed that optical modes in spiral-shaped microcavities come in pairs of clockwise and counterclockwise traveling-wave modes having the same frequencies and Q-factors but different modal distributions. In this comment, we show that the opposite is true: the modes are in general nondegenerate in terms of frequencies and Q-factors and the modal distributions are similar.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing InGaN multiple-quantum-well spiral-shaped micropillars" Appl. Phys. Lett. 83, 1710-1712 (2003).
    [CrossRef]
  2. J. Y. Lee, X. Luo, and A.W. Poon, "Reciprocal transmissions and asymmetric modal distributions in waveguidecoupled spiral-shaped microdisk resonators," Opt. Express 15, 14650-14666 (2007).
    [CrossRef] [PubMed]
  3. J. Wiersig, "Boundary element method for resonances in dielectric microcavities" J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
    [CrossRef]

2007

2003

J. Wiersig, "Boundary element method for resonances in dielectric microcavities" J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing InGaN multiple-quantum-well spiral-shaped micropillars" Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Appl. Phys. Lett.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing InGaN multiple-quantum-well spiral-shaped micropillars" Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

J. Wiersig, "Boundary element method for resonances in dielectric microcavities" J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

(Color online) Calculated magnetic field intensity of mode 1 (a) and 2 (b). Distribution of angular momentum α (1) m (solid line) and α (2) m (dashed) normalized to 1 at maximum: (c) absolute value squared, (d) real and (e) imaginary part. (f) Superpositions α + m =(α (1) m +α (2) m )/2 (solid) and α - m =(α (1) m -α (2) m )/2 (dashed, scaled by a factor of 5).

Metrics