Abstract

Excitation and localization of surface plasmon polariton modes in metal-dielectric structures can be utilized to construct nanophotonic materials and devices with tuneable optical dispersion. We present a selective polariton generator (SPG) device that demonstrates switching of light transmission based on surface plasmon antennae principles. This polarization-sensitive structure selectively generates and transports polaritons of a desired wavelength through subwavelength apertures. Two of these SPGs have been combined around a nanohole into a new, single device that allows polarization and wavelength selective switching of transmission. The multi-state operation is confirmed by experiment results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  5. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
    [CrossRef] [PubMed]
  6. Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005).
    [CrossRef] [PubMed]
  7. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
    [CrossRef]
  8. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901-1 - 213901-4 (2003).
    [CrossRef] [PubMed]
  9. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
    [CrossRef]
  10. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  11. S.-H Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
    [CrossRef] [PubMed]
  12. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
    [CrossRef]
  13. C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007).
    [CrossRef] [PubMed]
  14. P. Marthandam and R. Gordon, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007).
    [CrossRef] [PubMed]

2007 (2)

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007).
[CrossRef] [PubMed]

P. Marthandam and R. Gordon, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007).
[CrossRef] [PubMed]

2006 (2)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

2005 (2)

Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

S.-H Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1944 (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time-domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Nano Lett. (2)

Z. Liu, J. M. Steele, W. Srituravanich,Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmon Resonance with Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. D. Abajo, A. Polman, and H. A. Atwater, "Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence," Nano Lett. 7, 3612-3617 (2007).
[CrossRef] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelenght optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other (1)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901-1 - 213901-4 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Polariton generators fabricated using FIB milling. Scanning electron microscope images taken at 30° to the substrate surface of (a) circular surface plasmon antenna (570 nm corrugation period), (b) a single SPG (690 nm corrugation period), and (c) an orthogonally paired SPG nanophotonic device (vertical and horizontal corrugation periods of 690 nm and 570 nm respectively).

Fig. 2.
Fig. 2.

Experimental setup includes the light source (L), illumination and collection fibers (F), SPG substrate, objective lens (O), mirrors (M), CCD camera (CCD), polarization element (P) and a linear CCD spectrometer (S).

Fig. 3.
Fig. 3.

Overlay of transmission spectra for the two circular SP antennae with 570 nm (simulated - - -, experimental —) and 690 nm (simulated oe-16-8-5832-i001 , experimental oe-16-8-5832-i002 ) corrugation periods respectively.

Fig. 4.
Fig. 4.

Experimental (—) and simulated ( opex-16-8-5832-i003 ) transmission spectra at two light polarisations (P0 (—) and P90 (⋯)) for SPGs with corrugation periods of (a) 570 nm and (c) 690 nm. Polar plots of transmission peak amplitude for polarization angles variation over 180° in 5° increments are shown in figures (b) and (d) for corrugation periods of 570 nm and 690 nm respectively.

Fig. 5.
Fig. 5.

Characterisation of paired SPG device that combines two single SPGs of different corrugation periods, (570 nm horizontal and 690 nm vertical) centred on a single 300 nm diameter nanohole. (a) Experimental transmission spectra showing peak modulation over varied light polarisation angles. (b) Polar plot of intensity versus polarisation angle for the two peaks at 662 nm (+) and 774 nm (O) showing out-of-phase light modulation.

Metrics