Abstract

We demonstrate increased peak power from an Yb fiber CPA system operating with strong self-phase modulation by shaping the spectral-phase of the input pulses. An adaptive control loop used feedback from the output autocorrelation. We investigated pre-compensation of both SPM phase distortion at high energies, and residual dispersion from mismatched stretcher/compressor technologies at low energies. Phase shaping resulted in improved pulse quality. When using a bulk grating stretcher, shaping increased the autocorrelation peak by a factor of 2.9, and with a fiber stretcher, shaping increased the autocorrelation peak by a factor of 3.4. High-quality 800 fs, 65 µJ recompressed pulses were produced. This technique could benefit a wide variety of fiber amplifier systems and is self-optimising for operation at both low and high pulse energies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Roser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tunnermann, "90 W average power 100 mu J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
    [CrossRef] [PubMed]
  2. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
    [CrossRef]
  3. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  4. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  5. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
    [CrossRef]
  6. A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B: Lasers Opt. 70, S133-S141 (2000).
    [CrossRef]
  7. A. Efimov and D. H. Reitze, "Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier," Opt. Lett. 23, 1612-1614 (1998).
    [CrossRef]
  8. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
    [CrossRef]
  9. T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes and Review Papers 43, 1366-1375 (2004).
    [CrossRef]
  10. K. Ohno, T. Tanabe, and F. Kannari, "Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002).
    [CrossRef]
  11. G. Cheriaux, O. Albert, V. Wanman, J. P. Chambaret, C. Felix, and G. Mourou, "Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher," Opt. Lett. 26, 169-171 (2001).
    [CrossRef]
  12. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  13. D. N. Schimpf, J. Limpert, and A. Tünnermann, "Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum," Opt. Express 15, 16946-16953 (2007).
    [CrossRef]
  14. G. H. Zhu, J. Edinberg, and C. Xu, "Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2 pi," Opt. Express 15, 2530-2534 (2007).
    [CrossRef] [PubMed]
  15. A. Braun, S. Kane, and T. Norris, "Compensation of self-phase modulation in chirped-pulse amplification laser systems," Opt. Lett. 22, 615-617 (1997).
    [CrossRef] [PubMed]
  16. B. E. Lemoff and C. P. J. Barty, "Quintic-Phase-Limited, Spatially Uniform Expansion and Recompression of Ultrashort Optical Pulses," Opt. Lett. 18, 1651-1653 (1993).
    [CrossRef] [PubMed]
  17. F. He, J. H. V. Price, A. Malinowski, J. K. Sahu, and D. J. Richardson, "Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling " Opt. Express 14, 12846-12858 (2006).
    [CrossRef] [PubMed]
  18. C. Tsallis and D. A. Stariolo, "Generalized simulated annealing," Physica A 233, 395-406 (1996).
    [CrossRef]
  19. F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, "Adaptive control of femtosecond pulse propagation in optical fibers," Opt. Lett. 26, 938-940 (2001).
    [CrossRef]
  20. M. Tsang, D. Psaltis, and F. G. Omenetto, "Reverse propagation of femtosecond pulses in optical fibers," Opt. Lett. 28, 1873-1875 (2003).
    [CrossRef] [PubMed]
  21. J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, "Analysis of replica pulses in femtosecond pulse shaping with pixelated devices," Opt. Express 14, 1314-1328 (2006).
    [CrossRef] [PubMed]
  22. N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
    [CrossRef] [PubMed]
  23. H. S. S. Hung, J. Prawiharjo, N. K. Daga, D. C. Hanna, and D. P. Shepherd, "Experimental investigation of parametric transfer in synchronously pumped optical parametric oscillators," J. Opt. Soc. Am. B. 24, 2998-3006 (2007).
    [CrossRef]

2007 (5)

2006 (3)

2005 (1)

2003 (1)

2002 (1)

2001 (2)

2000 (3)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B: Lasers Opt. 70, S133-S141 (2000).
[CrossRef]

1998 (2)

1997 (2)

1996 (1)

C. Tsallis and D. A. Stariolo, "Generalized simulated annealing," Physica A 233, 395-406 (1996).
[CrossRef]

1993 (1)

Appl. Phys. B: Lasers Opt. (2)

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B: Lasers Opt. 70, S133-S141 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

H. S. S. Hung, J. Prawiharjo, N. K. Daga, D. C. Hanna, and D. P. Shepherd, "Experimental investigation of parametric transfer in synchronously pumped optical parametric oscillators," J. Opt. Soc. Am. B. 24, 2998-3006 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (10)

F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, "Adaptive control of femtosecond pulse propagation in optical fibers," Opt. Lett. 26, 938-940 (2001).
[CrossRef]

M. Tsang, D. Psaltis, and F. G. Omenetto, "Reverse propagation of femtosecond pulses in optical fibers," Opt. Lett. 28, 1873-1875 (2003).
[CrossRef] [PubMed]

A. Braun, S. Kane, and T. Norris, "Compensation of self-phase modulation in chirped-pulse amplification laser systems," Opt. Lett. 22, 615-617 (1997).
[CrossRef] [PubMed]

B. E. Lemoff and C. P. J. Barty, "Quintic-Phase-Limited, Spatially Uniform Expansion and Recompression of Ultrashort Optical Pulses," Opt. Lett. 18, 1651-1653 (1993).
[CrossRef] [PubMed]

G. Cheriaux, O. Albert, V. Wanman, J. P. Chambaret, C. Felix, and G. Mourou, "Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher," Opt. Lett. 26, 169-171 (2001).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
[CrossRef] [PubMed]

A. Efimov and D. H. Reitze, "Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier," Opt. Lett. 23, 1612-1614 (1998).
[CrossRef]

A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
[CrossRef]

F. Roser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, and A. Tunnermann, "90 W average power 100 mu J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
[CrossRef] [PubMed]

Physica A (1)

C. Tsallis and D. A. Stariolo, "Generalized simulated annealing," Physica A 233, 395-406 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Other (1)

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes and Review Papers 43, 1366-1375 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of fiber CPA system with adaptive phase control. (AOM=Acousto-Optic Modulator)

Fig. 2.
Fig. 2.

Results with bulk stretcher. (a) Autocorrelation without phase control at low energy and at 65 µJ. (b) Autocorrelation of 65 µJ pulses without (dashed blue) and with (solid red) phase shaping, and the flat-phase Fourier transform of the system output spectrum when shaping applied. (c) Spectra at the input (dashed blue) and output (solid red) of the pulse shaper. The phase applied is also shown. (d) System output spectra.

Fig. 3.
Fig. 3.

Results with fiber stretcher. (a), (c), (e) Autocorrelation traces: without (dashed blue) and with (solid red) phase shaping, and the flat-phase Fourier transform of the system output spectrum with shaping applied. (a) Low final energy, and low SPM in stretcher. (c) Low final energy, but high SPM in stretcher. (e) 65 µJ final pulses, and high SPM in stretcher. (b), (d), (f) System output spectra without (dashed blue) and with (solid red) phase shaping. The phase profiles applied are also shown.

Metrics