Abstract

High-power room-temperature operation of an Er:YAG laser at 1617 nm in-band pumped by a cladding-pumped Er, Yb fiber laser at 1532 nm is reported. The Er:YAG laser yielded 31 W of continuous-wave output in a beam with M2≈2.2 for 72 W of incident pump power. The threshold pump power was 4.1 W and the slope efficiency with respect to incident pump power was ~47%. The influence of erbium doping level and resonator design on laser performance is discussed, and the prospects for further increase in output power and improvement in lasing efficiency are considered.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient in-band pumped Er:YAG lasers with >60 W of output at 1645 nm," Opt. Lett 31, 754-756 (2006).
    [CrossRef] [PubMed]
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Electro-optically Q-switched Er:YAG laser in-band pumped by an Er Yb fiber laser," Advanced Solid-State Photonics 2006 Nevada WD4 (2006).
  3. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, "Efficient 1645 nm Er:YAG laser," Opt. Lett. 29, 1075-1077 (2004).
    [CrossRef] [PubMed]
  4. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, "Resonantly pumped eyesafe erbium lasers," IEEE J. Sel. Top. Quantum Electron. 11, 645-657 (2005).
    [CrossRef]
  5. K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG laser operating at 1645 and 1617 nm," IEEE J. Sel.Top Quantum Electron. 42, 182-186 (2006).
    [CrossRef]
  6. V. Leyva and K. Spariosu, "Power scaling of 1617-nm Er:YAG laser operation using a narrow bandwidth output coupler," Proc. SPIE 6100, 61000C (2006).
    [CrossRef]
  7. D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9J) pulsed power from resonantly diode-laser-pumped 1.6 μm Er:YAG laser," Appl. Phys. Lett. 87, 121101-121103 (2005).
    [CrossRef]
  8. M. Dubinskii, N. T. Gabrielyan, G. A. Newburgh, and L. D. Merkle, "Resonantly diode-pumped Er:YAG cryo-laser at 1618 nm," Technical Digest in Advanced Solid-State Photonics 2007, Post-deadline papers MF5 (2007).
  9. I. Kudryashov, D. Garbuzov, and M. Dubinskii, "Volume Bragg grating improves characteristics of resonantly diode pumped Er:YAG 1.65 μm DPSSL," Proc. SPIE  6451, 64510P (2007).
    [CrossRef]
  10. J. W. Kim, J. K. Sahu, and W. A. Clarkson, "Impact of energy-transfer-upconversion on the performance of hybrid Er:YAG lasers," Proc. SPIE 6871, 6871W (2007).
  11. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient Er Yb-doped fiber laser with 188W free-running and > 100W tunable output power," Opt. Express 13, 4916-4921 (2005).
    [CrossRef] [PubMed]

2007 (2)

I. Kudryashov, D. Garbuzov, and M. Dubinskii, "Volume Bragg grating improves characteristics of resonantly diode pumped Er:YAG 1.65 μm DPSSL," Proc. SPIE  6451, 64510P (2007).
[CrossRef]

J. W. Kim, J. K. Sahu, and W. A. Clarkson, "Impact of energy-transfer-upconversion on the performance of hybrid Er:YAG lasers," Proc. SPIE 6871, 6871W (2007).

2006 (3)

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient in-band pumped Er:YAG lasers with >60 W of output at 1645 nm," Opt. Lett 31, 754-756 (2006).
[CrossRef] [PubMed]

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG laser operating at 1645 and 1617 nm," IEEE J. Sel.Top Quantum Electron. 42, 182-186 (2006).
[CrossRef]

V. Leyva and K. Spariosu, "Power scaling of 1617-nm Er:YAG laser operation using a narrow bandwidth output coupler," Proc. SPIE 6100, 61000C (2006).
[CrossRef]

2005 (3)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9J) pulsed power from resonantly diode-laser-pumped 1.6 μm Er:YAG laser," Appl. Phys. Lett. 87, 121101-121103 (2005).
[CrossRef]

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, "Resonantly pumped eyesafe erbium lasers," IEEE J. Sel. Top. Quantum Electron. 11, 645-657 (2005).
[CrossRef]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient Er Yb-doped fiber laser with 188W free-running and > 100W tunable output power," Opt. Express 13, 4916-4921 (2005).
[CrossRef] [PubMed]

2004 (1)

Appl. Phys. Lett. (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9J) pulsed power from resonantly diode-laser-pumped 1.6 μm Er:YAG laser," Appl. Phys. Lett. 87, 121101-121103 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, "Resonantly pumped eyesafe erbium lasers," IEEE J. Sel. Top. Quantum Electron. 11, 645-657 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient in-band pumped Er:YAG lasers with >60 W of output at 1645 nm," Opt. Lett 31, 754-756 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (3)

V. Leyva and K. Spariosu, "Power scaling of 1617-nm Er:YAG laser operation using a narrow bandwidth output coupler," Proc. SPIE 6100, 61000C (2006).
[CrossRef]

I. Kudryashov, D. Garbuzov, and M. Dubinskii, "Volume Bragg grating improves characteristics of resonantly diode pumped Er:YAG 1.65 μm DPSSL," Proc. SPIE  6451, 64510P (2007).
[CrossRef]

J. W. Kim, J. K. Sahu, and W. A. Clarkson, "Impact of energy-transfer-upconversion on the performance of hybrid Er:YAG lasers," Proc. SPIE 6871, 6871W (2007).

Top Quantum Electron. (1)

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG laser operating at 1645 and 1617 nm," IEEE J. Sel.Top Quantum Electron. 42, 182-186 (2006).
[CrossRef]

Other (2)

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Electro-optically Q-switched Er:YAG laser in-band pumped by an Er Yb fiber laser," Advanced Solid-State Photonics 2006 Nevada WD4 (2006).

M. Dubinskii, N. T. Gabrielyan, G. A. Newburgh, and L. D. Merkle, "Resonantly diode-pumped Er:YAG cryo-laser at 1618 nm," Technical Digest in Advanced Solid-State Photonics 2007, Post-deadline papers MF5 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Er:YAG energy-level diagram showing the laser transitions at 1617 nm and 1645 nm.

Fig. 2.
Fig. 2.

Schematic diagram of Er:YAG resonator. IC : input coupler mirror (AR at 1532 nm and HR at 1600–1700 nm). OC : output coupler mirror (Transmission (T) of 10 %, 20 %, 30 % or 50 % at 1600–1700 nm).

Fig. 3.
Fig. 3.

Calculated gain cross-sections at 1617 nm and 1645 nm as a function of the population inversion parameter.

Fig. 4.
Fig. 4.

Output power versus incident pump power for Er:YAG laser with 0.5 at.% doping level (a) using output couplers with transmissions of 10%, 20% and 30%. (The solid symbols represent 1617 nm operation with an etalon and the open symbols represent 1645 nm operation). (b) Output power at 1617 nm with output coupler transmissions of 20%, 30% (with etalon) and 50% (without etalon).

Fig. 5.
Fig. 5.

Er:YAG laser output power at 1617 nm versus pump power for (a) different Er3+ doping levels using an output coupler with 50% transmission and (b) an optimized cavity design using a 0.25 at. % crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ g N 1 = [ log e ( 1 T ) + log e ( 1 L ) ]
σ g = β σ e ( 1 β ) σ a

Metrics