Abstract

We study the output characteristics of spot-size converter (SSC) integrated buried heterostructure (BH) laser diode (LD) by forming SSC with wet etching process. SSC-LD shows large chip-to-chip variation in threshold current(I th) and slope efficiency (η slope) compared to LD without SSC. I th and η slope are closely related with each other so that the front facet η slope increases while the rear facet η slope decreases with I th. Far-field angle is also found to be proportional to the front facet η slope. The trends observed are explained clearly by a unidirectional loss occurring when photons travel from the front to rear facet.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y.-H. Kwon, J.-S. Choe, J. Kim, K. Kim, K.-S. Choi, B.-S. Choi, and H. Yun, "Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes," ETRI J. 27, 484-490 (2005).
    [CrossRef]
  2. H. Oohashi, M. Fukuda, Y. Kondo, M. Wada, Y. Tohmori, Y. Sakai, H. Toda, and Y. Itaya, "Reliability of 1300-nm spot-size converter integrated laser diodes for low-cost optical modules in access networks," J. Lightwave Technol. 16, 1302-1307 (1998).
    [CrossRef]
  3. Y. Itaya, Y. Tohmori, and H. Toba, "Spot-size converter integrated laser diodes (SS-LDs)," IEEE J. Sel. Top. Quantum Electron. 3, 968-974 (1997).
    [CrossRef]
  4. H. S. Cho, K. H. Park, J. K. Lee, D. H. Jang, J. S. Kim, K. S. Park, C. S. Park, and K. E. Pyun, "Unbalanced facet output power and large spot size in 1.3 μm tapered active stripe lasers," Electron. Lett. 33, 781-782 (1997).
    [CrossRef]
  5. S.-W. Ryu, S.-B. Kim, J.-S. Sim, and J. Kim, "1.55-μm spot-size converter integrated laser diode with conventional buried-heterostructure laser process," IEEE Photon. Technol. Lett. 15, 12-14 (2003).
    [CrossRef]
  6. A. Lestra and J.-Y. Emery, "Monolithic integration of spot-size converters with 1.3-μm lasers and 1.55-μm polarization insensitive semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1429-1440 (1997).
    [CrossRef]
  7. B. T. Lee, R. A. Logan, R. F. Kalicek, Jr., A. M. Sergent, D. L. Coblentz, K. W. Wecht, and T. Tanbun-Ek, "Fabrication of InGaAsP/InP buried heterostructure laser using reactive ion etching and metalorganic chemical vapor deposition," IEEE Photon. Technol. Lett. 5, 279-281 (1993).
    [CrossRef]
  8. W.-C.W. Fang, C. G. Bethea, Y. K. Chen, and S. L. Chuang, "Longitudinal spatial inhomogeneities in high-power semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 117-127 (1995).
    [CrossRef]
  9. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).

2005 (1)

Y.-H. Kwon, J.-S. Choe, J. Kim, K. Kim, K.-S. Choi, B.-S. Choi, and H. Yun, "Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes," ETRI J. 27, 484-490 (2005).
[CrossRef]

2003 (1)

S.-W. Ryu, S.-B. Kim, J.-S. Sim, and J. Kim, "1.55-μm spot-size converter integrated laser diode with conventional buried-heterostructure laser process," IEEE Photon. Technol. Lett. 15, 12-14 (2003).
[CrossRef]

1998 (1)

1997 (3)

A. Lestra and J.-Y. Emery, "Monolithic integration of spot-size converters with 1.3-μm lasers and 1.55-μm polarization insensitive semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1429-1440 (1997).
[CrossRef]

Y. Itaya, Y. Tohmori, and H. Toba, "Spot-size converter integrated laser diodes (SS-LDs)," IEEE J. Sel. Top. Quantum Electron. 3, 968-974 (1997).
[CrossRef]

H. S. Cho, K. H. Park, J. K. Lee, D. H. Jang, J. S. Kim, K. S. Park, C. S. Park, and K. E. Pyun, "Unbalanced facet output power and large spot size in 1.3 μm tapered active stripe lasers," Electron. Lett. 33, 781-782 (1997).
[CrossRef]

1995 (1)

W.-C.W. Fang, C. G. Bethea, Y. K. Chen, and S. L. Chuang, "Longitudinal spatial inhomogeneities in high-power semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 117-127 (1995).
[CrossRef]

1993 (1)

B. T. Lee, R. A. Logan, R. F. Kalicek, Jr., A. M. Sergent, D. L. Coblentz, K. W. Wecht, and T. Tanbun-Ek, "Fabrication of InGaAsP/InP buried heterostructure laser using reactive ion etching and metalorganic chemical vapor deposition," IEEE Photon. Technol. Lett. 5, 279-281 (1993).
[CrossRef]

Electron. Lett. (1)

H. S. Cho, K. H. Park, J. K. Lee, D. H. Jang, J. S. Kim, K. S. Park, C. S. Park, and K. E. Pyun, "Unbalanced facet output power and large spot size in 1.3 μm tapered active stripe lasers," Electron. Lett. 33, 781-782 (1997).
[CrossRef]

ETRI J. (1)

Y.-H. Kwon, J.-S. Choe, J. Kim, K. Kim, K.-S. Choi, B.-S. Choi, and H. Yun, "Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes," ETRI J. 27, 484-490 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W.-C.W. Fang, C. G. Bethea, Y. K. Chen, and S. L. Chuang, "Longitudinal spatial inhomogeneities in high-power semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 117-127 (1995).
[CrossRef]

A. Lestra and J.-Y. Emery, "Monolithic integration of spot-size converters with 1.3-μm lasers and 1.55-μm polarization insensitive semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1429-1440 (1997).
[CrossRef]

Y. Itaya, Y. Tohmori, and H. Toba, "Spot-size converter integrated laser diodes (SS-LDs)," IEEE J. Sel. Top. Quantum Electron. 3, 968-974 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. T. Lee, R. A. Logan, R. F. Kalicek, Jr., A. M. Sergent, D. L. Coblentz, K. W. Wecht, and T. Tanbun-Ek, "Fabrication of InGaAsP/InP buried heterostructure laser using reactive ion etching and metalorganic chemical vapor deposition," IEEE Photon. Technol. Lett. 5, 279-281 (1993).
[CrossRef]

S.-W. Ryu, S.-B. Kim, J.-S. Sim, and J. Kim, "1.55-μm spot-size converter integrated laser diode with conventional buried-heterostructure laser process," IEEE Photon. Technol. Lett. 15, 12-14 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Other (1)

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic structure of 1.3µm SSC-LD. The structure is similar to that of conventional BH LD except for the active region etched to taper shape and passive core beneath the lower cladding layer.

Fig. 2.
Fig. 2.

I-L characteristics of SSC-LD’s in a chip bar. As previously reported [4, 5], the slope efficiency from the front facet with SSC is larger than that from the rear facet. Inset is the data for non-SSC LD’s. Comparing the two data, I-L curves of SSC-LD show larger spread.

Fig. 3.
Fig. 3.

η front, η rear, η front+η rear, and SER as functions of I th. As I th increases, η front also increases while η rear decreases. This tendency makes SER increases steeply with I th. The opposite behavior of η front and η rear makes η front+η rear nearly unchanged.

Fig. 4.
Fig. 4.

(a) Schematic plan view figure of SSC-LD. Assuming facet reflectivity R, the fraction of reflected photons among the right-traveling photons is R. As photons propagate further along the SSC region, part of them are lost as radiation and finally is coupled to active waveguide mode where α(<1) is the fraction of photons recoupled. (b) Equivalent non-SSC LD is with front facet of reflectivity .

Fig. 5.
Fig. 5.

I th of chip bars versus SER. Each symbol indicates the mean value, and the horizontal and vertical error-bars indicate the standard deviation of SER and I th within a chip bar, respectively. This shows that the trend within a single chip bar (Fig. 3) is also applied between the chip bars. SER=1 means equal output efficiency at both the facets that can be observed from LD without SSC.

Fig. 6.
Fig. 6.

Horizontal far-field angle of SSC-LD’s versus η front. As η front increases, far-field angle also increases. Small far-field angle originates from large near-field mode that causes large unidirectional loss.

Metrics