Abstract

Transform-limited pulses as short as 290 fs at 1036 nm are generated by a diode-pumped semiconductor disk laser. The all-semiconductor laser employs a graded-gap-barrier design in the gain section. A fast saturable absorber mirror serves as a passive mode-locker. No further elements for internal or external dispersion control are required.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
    [CrossRef]
  2. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
    [CrossRef]
  3. J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, "High power CW red VECSEL with linearly polarized TEM00 output beam," Opt. Express 13, 77-81 (2004).
    [CrossRef]
  4. L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm," J. Cryst. Growth 268, 128-134 (2004).
    [CrossRef]
  5. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, "Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser," Appl. Phys. Lett. 89, 061114 (2006).
    [CrossRef]
  6. E. U. Rafailov, W. Sibbett, A. Mooradian, J. G. McInerney, H. Karlsson, S. Wang, and F. Laurell, "Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal," Opt. Lett. 28, 2091-2093 (2003).
    [CrossRef] [PubMed]
  7. U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
    [CrossRef]
  8. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B 75, 445-451 (2002).
    [CrossRef]
  9. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
    [CrossRef]
  10. S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser," IEEE Photon. Technol. Lett. 17, 267-269 (2005).
    [CrossRef]
  11. Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi and H. Higuchi, "Mode locking in Fabry-Perot semiconductor lasers," Phys. Rev. A 65, 043807 (2002).
    [CrossRef]
  12. H. Kroemer, "Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks (Nobel Lecture)," ChemPhysChem 2, 490-499 (2001).
    [CrossRef]
  13. F. Saas, V. Talalaev, U. Griebner, J. W. Tomm, M. Zorn, and M. Weyers, "Optically pumped semiconductor disk laser with graded and step indices," Appl. Phys. Lett. 89, 151120 (2006).
    [CrossRef]
  14. F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, "Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser," Appl. Phys. Lett. 89,141107 (2006).
    [CrossRef]
  15. U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, "X-ray diffraction spot mapping - a tool to study structural properties of semiconductor disk laser devices," Phys. Status Solidi(A) 204, 2753-2759 (2007)
    [CrossRef]
  16. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, "Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror," J. Opt. Soc. Am. B 16, 895-904 (1999)
    [CrossRef]
  17. Esa J. Saarinen, Robert Herda, and Oleg G. Okhotnikov, "Dynamics of pulse formation in mode-locked semiconductor disk lasers," J. Opt. Soc. Am. B 24, 2784-2790 (2007).
    [CrossRef]
  18. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
    [CrossRef]

2007

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, "X-ray diffraction spot mapping - a tool to study structural properties of semiconductor disk laser devices," Phys. Status Solidi(A) 204, 2753-2759 (2007)
[CrossRef]

Esa J. Saarinen, Robert Herda, and Oleg G. Okhotnikov, "Dynamics of pulse formation in mode-locked semiconductor disk lasers," J. Opt. Soc. Am. B 24, 2784-2790 (2007).
[CrossRef]

2006

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, "Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser," Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

F. Saas, V. Talalaev, U. Griebner, J. W. Tomm, M. Zorn, and M. Weyers, "Optically pumped semiconductor disk laser with graded and step indices," Appl. Phys. Lett. 89, 151120 (2006).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, "Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser," Appl. Phys. Lett. 89,141107 (2006).
[CrossRef]

U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
[CrossRef]

2005

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser," IEEE Photon. Technol. Lett. 17, 267-269 (2005).
[CrossRef]

2004

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm," J. Cryst. Growth 268, 128-134 (2004).
[CrossRef]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, "High power CW red VECSEL with linearly polarized TEM00 output beam," Opt. Express 13, 77-81 (2004).
[CrossRef]

2003

2002

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi and H. Higuchi, "Mode locking in Fabry-Perot semiconductor lasers," Phys. Rev. A 65, 043807 (2002).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B 75, 445-451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

2001

H. Kroemer, "Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks (Nobel Lecture)," ChemPhysChem 2, 490-499 (2001).
[CrossRef]

1999

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, "Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror," J. Opt. Soc. Am. B 16, 895-904 (1999)
[CrossRef]

1996

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Appl. Phys. B

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B 75, 445-451 (2002).
[CrossRef]

Appl. Phys. Lett.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

F. Saas, V. Talalaev, U. Griebner, J. W. Tomm, M. Zorn, and M. Weyers, "Optically pumped semiconductor disk laser with graded and step indices," Appl. Phys. Lett. 89, 151120 (2006).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, "Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser," Appl. Phys. Lett. 89,141107 (2006).
[CrossRef]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, "Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser," Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

ChemPhysChem

H. Kroemer, "Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks (Nobel Lecture)," ChemPhysChem 2, 490-499 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams," IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser," IEEE Photon. Technol. Lett. 17, 267-269 (2005).
[CrossRef]

J. Cryst. Growth

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm," J. Cryst. Growth 268, 128-134 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rep.

U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006).
[CrossRef]

Phys. Rev. A

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi and H. Higuchi, "Mode locking in Fabry-Perot semiconductor lasers," Phys. Rev. A 65, 043807 (2002).
[CrossRef]

Phys. Status Solidi

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, "X-ray diffraction spot mapping - a tool to study structural properties of semiconductor disk laser devices," Phys. Status Solidi(A) 204, 2753-2759 (2007)
[CrossRef]

Proc. SPIE

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic band gap diagram of a step index (STIN) (a) and a graded index (GRIN) (b) 4-QW gain structure design. Arrows mark the excitation photon energy. The red curves indicate the interference pattern formed by the incident and reflected 1036-nm-light beam.

Fig. 2.
Fig. 2.

Setup of the passively mode-locked semiconductor disk laser.

Fig. 3.
Fig. 3.

(a) Autocorrelation trace of the passively mode-locked semiconductor disk laser; τp : pulse duration, τpΔν: time-bandwidth product, τac : autocorrelation width. (b) Optical spectrum; Δλ: spectral width.

Fig. 4.
Fig. 4.

Radio frequency spectrum of the passively mode-locked semiconductor disk laser. (a) First beat note; (b) 7-GHz scan.

Metrics