Abstract

We report a miniaturized fiber inline Fabry-Perot interferometer (FPI), with an open micro-notch cavity fabricated by one-step fs laser micromachining, for highly sensitive refractive index measurement. The device was tested for measurement of the refractive indices of various liquids including isopropanol, acetone and methanol at room temperature, as well as the temperature-dependent refractive index of deionized water from 3 to 90°C. The sensitivity for measurement of refractive index change of water was 1163 nm/RIU at the wavelength of 1550 nm. The temperature cross-sensitivity of the device was about 1.1×10-6 RIU/°C. The small size, all-fiber structure, small temperature dependence, linear response and high sensitivity, make the device attractive for chemical and biological sensing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Del Villar, I. R. Matias, and F. J. Arregui, "Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials," Opt. Lett. 30, 2363-2365 (2005).
    [CrossRef] [PubMed]
  2. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122:1-3 (2005).
    [CrossRef]
  3. I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  4. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007).
    [CrossRef] [PubMed]
  5. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
    [CrossRef] [PubMed]
  6. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  7. Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
    [CrossRef]
  8. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry - Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
    [CrossRef]
  9. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, "Single-crystal sapphire fiber-based strain sensor for high-temperature applications," J. Lightwave Technol. 21, 2276-2283 (2003).
    [CrossRef]
  10. Y. Zhang, X. Chen, Y. Wang, K. L. Cooper, and A. Wang, "Microgap Multicavity Fabry-Pérot Biosensor," J. Lightwave Technol. 25, 1797-1804 (2007).
    [CrossRef]
  11. G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, "Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor," Sens. Actuators, A 118, 177-182 (2005).
    [CrossRef]
  12. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, "Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index," Opt. Express 16, 2252-2263 (2008).
    [CrossRef] [PubMed]
  13. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, "Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser," Opt. Express 15, 14123-14128 (2007).
    [CrossRef] [PubMed]
  14. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, "Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining," Opt. Lett. 32, 3071-3073 (2007).
    [CrossRef] [PubMed]
  15. T. Wei, Y. Han, H-L. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Opt. Lett. 33, 536-538 (2008).
    [CrossRef] [PubMed]
  16. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
    [CrossRef]
  17. J. B. Hawkes, and R. W. Astherimer, "Temperature coefficient of the refractive index of water," J. Opt. Soc. Am. 38, 804-806 (1948).
    [CrossRef] [PubMed]

2008

2007

2006

Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
[CrossRef]

I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

2005

I. Del Villar, I. R. Matias, and F. J. Arregui, "Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials," Opt. Lett. 30, 2363-2365 (2005).
[CrossRef] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122:1-3 (2005).
[CrossRef]

2003

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, "Single-crystal sapphire fiber-based strain sensor for high-temperature applications," J. Lightwave Technol. 21, 2276-2283 (2003).
[CrossRef]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

1996

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry - Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

1948

Appl. Phys. Lett.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122:1-3 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

Meas. Sci. Technol.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry - Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996).
[CrossRef]

Opt. Eng.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
[CrossRef]

Opt. Lett.

Other

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, "Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor," Sens. Actuators, A 118, 177-182 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Fiber inline FPI fabricated by fs laser micromachining, (a) structural schematic, (b) SEM image, and (c) simulated interference spectrum.

Fig. 2.
Fig. 2.

Interference spectra of the FPI device in air, methanol, acetone and isopropanol.

Fig. 3.
Fig. 3.

Experimental setup for refractive index measurement.

Fig. 4.
Fig. 4.

Measured refractive index of deionized water as a function of temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 4 π n · L λ + ϕ 0 )
I = I min , when 4 π n · L λ v + ϕ 0 = ( 2 m + 1 ) π
L · n = 1 2 ( λ v 1 λ v 2 λ v 2 λ v 1 )
dn d λ v = 1 4 π L .
Δ n = Δ λ v λ v n ,

Metrics