Abstract

Femtosecond laser pulses, which are tunable from 440 to 990 nm, are generated at MHz repetition rates by noncollinear parametric amplification (NOPA). The pulses have durations of 20 to 30 fs over the major part of the tuning range and a high energy stability of 1.3% (rms). The NOPA is pumped with ultraviolet pulses from the third harmonic of an ytterbium doped fiber laser system and seeded by a smooth continuum generated in bulk sapphire. The residual second harmonic is used to pump an additional NOPA, which is independently tunable from 620 to 990 nm. Interference experiments show that the two NOPA systems have a precisely locked relative phase, despite of being pumped by different harmonics with a random phase jitter. This demonstrates that the phase of pulses generated by optical parametric amplification does not depend on the pump phase.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, "Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system," Opt. Lett. 33, 192-194 (2008).
    [CrossRef] [PubMed]
  2. M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, "Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator," Opt. Lett. 32, 1489-1491 (2007).
    [CrossRef] [PubMed]
  3. J. Rothhardt, S. Hädrich, D. N. Schimpf, J. Limpert, and A. Tünnermann, "High repetition rate fiber amplifier pumped sub-20 fs optical parametric amplifier," Opt. Express 15, 16729-16736 (2007).
    [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  5. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, "Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6," Appl. Phys. Lett. 89, 173124 1-3 (2006).
    [CrossRef]
  6. A. Dubietis, G. Tamošauskas, and A. Varanavičius, "Femtosecond third-harmonic pulse generation by mixing of pulses with different duration," Opt. Commun. 186, 211-217 (2000).
    [CrossRef]
  7. SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423.
  8. H. S. Park, J. S. Baskin, O.-H. Kwon, and A. H. Zewail, "Atomic-Scale Imaging in Real and Energy Space Developed in Ultrafast Electron Microscopy," Nano Lett. 7, 2545-2551 (2007).
    [CrossRef] [PubMed]
  9. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, "Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator," Opt. Lett. 20, 1562-1564 (1995).
    [CrossRef] [PubMed]
  10. T. Wilhelm, J. Piel, and E. Riedle, "Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter," Opt. Lett. 22, 1494-1496 (1997).
    [CrossRef]
  11. G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  12. R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
    [CrossRef]
  13. F. Tavella, A. Marcinkevičius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006).
    [CrossRef] [PubMed]
  14. S. Witte, R. Th. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, "A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification," Opt. Express 14, 8168-8177 (2006).
    [CrossRef] [PubMed]
  15. I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75, 2323-2327 (2004).
    [CrossRef]
  16. K. Duncker and W. Widdra, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany (personal communication, 2008).
  17. P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, "Phase-coherent generation of tunable visible femtosecond pulses," Opt. Lett. 28, 185-187 (2003).
    [CrossRef] [PubMed]
  18. P. Baum, E. Riedle, M. Greve, and H. R. Telle, "Phase-locked ultrashort pulse trains at separate and independently tunable wavelengths," Opt. Lett. 30, 2028-2030 (2005).
    [CrossRef] [PubMed]
  19. P. Tzankov, T. Fiebig, and I. Buchvarov, "Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification," Appl. Phys. Lett. 82, 517-519 (2003).
    [CrossRef]
  20. A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, "Megahertz optical parametric amplifier pumped by a femtosecond oscillator," Opt. Lett. 31, 125-127 (2006).
    [CrossRef] [PubMed]
  21. A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, "Generation of few-cycle pulses directly from a MHz-NOPA," Opt. Express 14, 10627-10630 (2006).
    [CrossRef] [PubMed]
  22. H. Merdji, T. Auguste, W. Boutu, J.-P. Caumes, B. Carré, T. Pfeifer, A. Jullien, D. M. Neumark, and S. R. Leone, "Isolated attosecond pulses using a detuned second-harmonic field," Opt. Lett. 32, 3134-3136 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (4)

2006 (6)

2005 (1)

2004 (2)

R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75, 2323-2327 (2004).
[CrossRef]

2003 (3)

P. Tzankov, T. Fiebig, and I. Buchvarov, "Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification," Appl. Phys. Lett. 82, 517-519 (2003).
[CrossRef]

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, "Phase-coherent generation of tunable visible femtosecond pulses," Opt. Lett. 28, 185-187 (2003).
[CrossRef] [PubMed]

2000 (1)

A. Dubietis, G. Tamošauskas, and A. Varanavičius, "Femtosecond third-harmonic pulse generation by mixing of pulses with different duration," Opt. Commun. 186, 211-217 (2000).
[CrossRef]

1997 (1)

1995 (1)

Appl. Phys. B (1)

R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, "Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6," Appl. Phys. Lett. 89, 173124 1-3 (2006).
[CrossRef]

P. Tzankov, T. Fiebig, and I. Buchvarov, "Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification," Appl. Phys. Lett. 82, 517-519 (2003).
[CrossRef]

Nano Lett. (1)

H. S. Park, J. S. Baskin, O.-H. Kwon, and A. H. Zewail, "Atomic-Scale Imaging in Real and Energy Space Developed in Ultrafast Electron Microscopy," Nano Lett. 7, 2545-2551 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Dubietis, G. Tamošauskas, and A. Varanavičius, "Femtosecond third-harmonic pulse generation by mixing of pulses with different duration," Opt. Commun. 186, 211-217 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (8)

M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, "Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator," Opt. Lett. 32, 1489-1491 (2007).
[CrossRef] [PubMed]

H. Merdji, T. Auguste, W. Boutu, J.-P. Caumes, B. Carré, T. Pfeifer, A. Jullien, D. M. Neumark, and S. R. Leone, "Isolated attosecond pulses using a detuned second-harmonic field," Opt. Lett. 32, 3134-3136 (2007).
[CrossRef] [PubMed]

C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, "Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system," Opt. Lett. 33, 192-194 (2008).
[CrossRef] [PubMed]

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, "Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator," Opt. Lett. 20, 1562-1564 (1995).
[CrossRef] [PubMed]

T. Wilhelm, J. Piel, and E. Riedle, "Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter," Opt. Lett. 22, 1494-1496 (1997).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, "Phase-coherent generation of tunable visible femtosecond pulses," Opt. Lett. 28, 185-187 (2003).
[CrossRef] [PubMed]

P. Baum, E. Riedle, M. Greve, and H. R. Telle, "Phase-locked ultrashort pulse trains at separate and independently tunable wavelengths," Opt. Lett. 30, 2028-2030 (2005).
[CrossRef] [PubMed]

A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, "Megahertz optical parametric amplifier pumped by a femtosecond oscillator," Opt. Lett. 31, 125-127 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Rev. Sci. Instrum. (2)

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, "Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses," Rev. Sci. Instrum. 75, 2323-2327 (2004).
[CrossRef]

Other (2)

K. Duncker and W. Widdra, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany (personal communication, 2008).

SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental arrangement. λ/2, half-wave plate; PBS, polarization beam splitter; L1–L5, lenses; DM, dichroic mirror; BS, beam splitter (50%, broadband coating or dichroic mirror)

Fig. 2.
Fig. 2.

Simulation of the 3ω0 generation using SNLO [7]. (a) When entering the type-II BBO mixing crystal, the ω0 pulse leads the 2ω0 pulse by 50 fs due to GVM in the BBO crystal used for second harmonic generation. (b) After 0.5 mm in the mixing crystal, the 2ω0 pulse has overtaken the ω0 pulse. (c) After 1.0 mm, the 2ω0 pulse starts to separate from the ω0 pulse, which reduces the efficiency of 3ω0 generation.

Fig. 3.
Fig. 3.

Typical output spectra of the 345 nm pumped noncollinear optical parametric amplifier, showing the more than octave wide continuous tuning range.

Fig. 4.
Fig. 4.

Typical measured autocorrelation traces (dots) and Gaussian fits to the data (red line) at various wavelengths. The autocorrelation traces are very smooth and pedestal-free, indicating pulses without temporal satellites.

Fig. 5.
Fig. 5.

Summary of calculated Fourier-limited pulse lengths from measured spectra (blue squares for UV pumping, green triangles for green pumping [1]) and calculated pulse lengths from measured autocorrelation traces (red diamonds). The dotted blue lines show theoretical limits for the minimum pulse length, assuming group-velocity matching in the spectral range below 660 nm and based on the group-velocity mismatch between signal and idler above 750 nm.

Fig. 6.
Fig. 6.

Relative intensity noise of (a) the fiber laser system and (b) the NOPA.

Fig. 7.
Fig. 7.

Scatter density plots of output vs. input noise of various nonlinear processes involved in the generation of the NOPA pulses.

Fig. 8.
Fig. 8.

Interference experiment to investigate phase dependencies in optical parametric amplification (OPA). (a) Experimental setup. SCG: supercontinuum generation, BS: beam splitter. (b) Wrong-color representation of the amplitude of successive interference patterns showing the high phase stability. (c) Single measured spatial interference pattern. (d) and (e) Phase of the interference pattern over time.

Tables (1)

Tables Icon

Table 1: Group delay of pulses of the quoted frequencies after propagating through 1 mm of BBO for different phase matching configurations (ω0 corresponding to a wavelength of 1035 nm).

Metrics