Abstract

An ultra-small silicon-based microring modulator and filter were proposed to generate and demodulate NRZ DPSK at 10 Gb/s. In this paper, we analyze performance dependencies of the modulator and demodulator under different operating conditions, such as variable laser linewidth, phase shift, demodulator offset and receiver bandwidth. Data quality of the microring-based DPSK transceiver can be optimized with eye-opening improvement of up to 7 dB. Transmission performance of the all-microring-based DPSK signal over a 70-km single mode fiber is compared to that of DPSK using a Mach-Zehnder modulator and a delay-line interferometer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  2. C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
    [CrossRef]
  3. R. D. Kekatpure and M. L. Brongersma, "CMOS compatible high-speed electro-optical modulator," Proc. SPIE 5926, paper G1 (2005).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  5. C. Li, L. Zhou, and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069-5076 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069.
    [CrossRef] [PubMed]
  6. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  7. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14765.
    [CrossRef] [PubMed]
  8. Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Express 16, 4309-4315 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4309.
    [CrossRef] [PubMed]
  9. L. Zhang, J.-Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, "Microring-based modulation and demodulation of DPSK signal," Opt. Express 15, 11564-11569 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11564.
    [CrossRef] [PubMed]
  10. Y. Chen and S. Blair, "Nonlinear phase shift of cascaded microring resonators," J. Opt. Soc. Am. B 20, 2125-2132 (2003).
    [CrossRef]
  11. A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P. D. Dapkus, and W. Marshall, "Optical phase characterization of active semiconductor microdisk resonators in transmission," Appl. Phys. Lett. 88, 031106 (2006).
    [CrossRef]
  12. L. Christen, Y. K. Lize, S. Nuccio, J.-Y Yang, S. Poorya, A. E. Willner, and L. Paraschis, "Fiber Bragg grating balanced DPSK demodulation," in Proceedings of IEEE LEOS Annual Meeting 2006 (Institute of Electrical and Electronics Engineers, Montreal, Canada, 2006), pp. 563-564.
  13. H. A. Haus, Waves and fields in optoelectronics (Prentic-Hall, Inc. Englewood Cliffs, N.J., 1984) 197-206.
  14. J. Caprnany, "Investigation of phase-induced intensity noise in amplified fibre-optic recirculating delay line," Electron. Lett. 29, 346-348 (1993).
    [CrossRef]
  15. R. G. Beausoleil, "Nanophotonic Interconnect for High-Performance Many-Core Computation", in Proceedings of IEEE LEOS Annual Meeting 2007 (Institute of Electrical and Electronics Engineers, Orlando, USA, 2007), pp. 523-524.

2008

2007

2006

A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P. D. Dapkus, and W. Marshall, "Optical phase characterization of active semiconductor microdisk resonators in transmission," Appl. Phys. Lett. 88, 031106 (2006).
[CrossRef]

2005

A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

2004

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

2003

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1993

J. Caprnany, "Investigation of phase-induced intensity noise in amplified fibre-optic recirculating delay line," Electron. Lett. 29, 346-348 (1993).
[CrossRef]

Appl. Phys. Lett.

A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P. D. Dapkus, and W. Marshall, "Optical phase characterization of active semiconductor microdisk resonators in transmission," Appl. Phys. Lett. 88, 031106 (2006).
[CrossRef]

Electron. Lett.

J. Caprnany, "Investigation of phase-induced intensity noise in amplified fibre-optic recirculating delay line," Electron. Lett. 29, 346-348 (1993).
[CrossRef]

J. Appl. Phys.

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

J. Lightwave Technol.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express

Other

R. D. Kekatpure and M. L. Brongersma, "CMOS compatible high-speed electro-optical modulator," Proc. SPIE 5926, paper G1 (2005).
[CrossRef]

L. Christen, Y. K. Lize, S. Nuccio, J.-Y Yang, S. Poorya, A. E. Willner, and L. Paraschis, "Fiber Bragg grating balanced DPSK demodulation," in Proceedings of IEEE LEOS Annual Meeting 2006 (Institute of Electrical and Electronics Engineers, Montreal, Canada, 2006), pp. 563-564.

H. A. Haus, Waves and fields in optoelectronics (Prentic-Hall, Inc. Englewood Cliffs, N.J., 1984) 197-206.

R. G. Beausoleil, "Nanophotonic Interconnect for High-Performance Many-Core Computation", in Proceedings of IEEE LEOS Annual Meeting 2007 (Institute of Electrical and Electronics Engineers, Orlando, USA, 2007), pp. 523-524.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Modulation and demodulation of microring-based NRZ-DPSK. (a) Modulation: CW experiences π phase shift between two open circles, using a single-waveguide over-coupled microring. (b) Demodulation is achieved by a double-waveguide microring filter where duobinary and AMI are obtained in the band-pass and notch ports, respectively.

Fig. 2.
Fig. 2.

Signal waveforms from a microring-based DPSK modulator are shown for different laser linewidths: 10 MHz, 300 kHz and 10 kHz, respectively.

Fig. 3.
Fig. 3.

Eye-opening penalty changes dramatically with laser linewidth for different cavity Q-factors of the ring resonators, compared to MZM-based DPSK. When cavity Q-factor is chosen to be 10000 and laser linewidth is <10 MHz, <1 dB penalty is obtained. Eye-diagrams are plotted in the same scale.

Fig. 4.
Fig. 4.

(a) Signal power linearly increases with phase shift by driving the modulator harder. (b) Eye-opening improvement given by driving the ring modulator harder, as phase shift is more than π. Eye-diagrams are plotted in the same scale.

Fig. 5.
Fig. 5.

(a) Eye-opening penalty is examined as a function of demodulator frequency offset. Microring-based demodulator is more tolerant to the offset than a DLI (b) Eye-opening improvement is obtained by increasing receiver bandwidth. Eye-diagrams are plotted in the same scale.

Fig. 6
Fig. 6

Power penalty comparison between the all-ring based and conventional DPSK links, over single mode fiber transmission up to 70 km.

Metrics