Abstract

We report the experimental generation of polarization entangled photon pairs based on spontaneous four-wave mixing in a silicon waveguide. Using a nano-scale silicon wire waveguide placed in a fiber loop, we obtained 1.5-µm band polarization entanglement with two-photon interference visibilities of >83%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135 (2007).
    [CrossRef]
  3. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN wavetguides," Electron. Lett. 39, 621 (2003).
    [CrossRef]
  4. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55- μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293 (2005).
    [CrossRef] [PubMed]
  5. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. 3, 692 (2007).
    [CrossRef]
  6. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  7. H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  8. T. G. Noh, H. Kim, T. Zyung, and J. Kim, "Efficient source of high purity polarization-entangled photon pairs in the 1550 nm telecommunication band," Appl. Phys. Lett. 90, 011116 (2007).
    [CrossRef]
  9. H. Takesue, "1.5- m band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204101 (2007).
    [CrossRef]
  10. E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
    [CrossRef]
  11. D. Collins, N. Gisin, and H. de Riedmatten, "Quantum relays for long distance quantum cryptography," J. Mod. Opt. 52, 735 (2005).
    [CrossRef]
  12. K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
    [CrossRef]
  13. H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  14. Q. Lin and G. P. Agrawal, "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett. 31, 3140 (2006).
    [CrossRef] [PubMed]
  15. J. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388 (2006).
    [CrossRef] [PubMed]
  16. R. Claps, D. Dimitropoulos, Y. Han and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305 (2002).
    [PubMed]
  17. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
    [CrossRef]
  18. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
    [CrossRef]
  19. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (2007).
    [CrossRef]
  20. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891 (1998).
    [CrossRef]
  21. T. Yamamoto, M. Koashi, S. K. Ozdemir, N. Imoto, "Experimental extraction of an entangled photon pair from two identically decohered pairs," Nature 421, 343 (2003).
    [CrossRef] [PubMed]
  22. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, "Experimental entanglement purification of arbitrary unknown states," Nature 423, 417, (2003).
    [CrossRef]
  23. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
    [CrossRef]
  24. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  25. J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phys. Rev. A 76, 043836 (2007).
    [CrossRef]
  26. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
    [CrossRef]
  27. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629 (2005).
    [CrossRef] [PubMed]
  28. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin,W. Tittel, H. Zbinden, and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637 (2004).
  29. K. F. Lee, P. Kumar, J. E. Sharping, M. A. Foster, A. L. Gaeta, A. C. Turner, and M. Lipson, "Telecom-band entanglement generation for chipscale quantum processing," arXiv:0801.2606 (quant-ph) 17 January, 2008.
  30. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880 (1969).
    [CrossRef]
  31. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  32. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Sminov, B. Voronov, A. Dzadanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
    [CrossRef]
  33. A. J. Miller, S.W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791 (2003).
    [CrossRef]

2007 (8)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135 (2007).
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. 3, 692 (2007).
[CrossRef]

T. G. Noh, H. Kim, T. Zyung, and J. Kim, "Efficient source of high purity polarization-entangled photon pairs in the 1550 nm telecommunication band," Appl. Phys. Lett. 90, 011116 (2007).
[CrossRef]

H. Takesue, "1.5- m band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204101 (2007).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phys. Rev. A 76, 043836 (2007).
[CrossRef]

2006 (3)

2005 (6)

D. Collins, N. Gisin, and H. de Riedmatten, "Quantum relays for long distance quantum cryptography," J. Mod. Opt. 52, 735 (2005).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55- μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629 (2005).
[CrossRef] [PubMed]

2004 (2)

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin,W. Tittel, H. Zbinden, and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637 (2004).

K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
[CrossRef]

2003 (4)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN wavetguides," Electron. Lett. 39, 621 (2003).
[CrossRef]

T. Yamamoto, M. Koashi, S. K. Ozdemir, N. Imoto, "Experimental extraction of an entangled photon pair from two identically decohered pairs," Nature 421, 343 (2003).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, "Experimental entanglement purification of arbitrary unknown states," Nature 423, 417, (2003).
[CrossRef]

A. J. Miller, S.W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791 (2003).
[CrossRef]

2002 (3)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305 (2002).
[PubMed]

2001 (2)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Sminov, B. Voronov, A. Dzadanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

1998 (1)

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891 (1998).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

Appl. Phys. Lett. (5)

T. G. Noh, H. Kim, T. Zyung, and J. Kim, "Efficient source of high purity polarization-entangled photon pairs in the 1550 nm telecommunication band," Appl. Phys. Lett. 90, 011116 (2007).
[CrossRef]

H. Takesue, "1.5- m band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers," Appl. Phys. Lett. 90, 204101 (2007).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Sminov, B. Voronov, A. Dzadanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

A. J. Miller, S.W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791 (2003).
[CrossRef]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN wavetguides," Electron. Lett. 39, 621 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).
[CrossRef]

J. Mod. Opt. (2)

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin,W. Tittel, H. Zbinden, and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637 (2004).

D. Collins, N. Gisin, and H. de Riedmatten, "Quantum relays for long distance quantum cryptography," J. Mod. Opt. 52, 735 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
[CrossRef]

Nat. Phys. (1)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. 3, 692 (2007).
[CrossRef]

Nature (3)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575 (2007).
[CrossRef]

T. Yamamoto, M. Koashi, S. K. Ozdemir, N. Imoto, "Experimental extraction of an entangled photon pair from two identically decohered pairs," Nature 421, 343 (2003).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, "Experimental entanglement purification of arbitrary unknown states," Nature 423, 417, (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (4)

E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, "Integrable optical-fiber source of polarizationentangled photon pairs in the telecom band," Phys. Rev. A 73, 052301 (2006).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phys. Rev. A 76, 043836 (2007).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Phys. Rev. Lett. (5)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880 (1969).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted," Phys. Rev. Lett. 80, 3891 (1998).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999).
[CrossRef]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135 (2007).
[CrossRef]

Other (2)

H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

K. F. Lee, P. Kumar, J. E. Sharping, M. A. Foster, A. L. Gaeta, A. C. Turner, and M. Lipson, "Telecom-band entanglement generation for chipscale quantum processing," arXiv:0801.2606 (quant-ph) 17 January, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. PBS: polarization beam splitter, PC: polarization controller.

Fig. 2.
Fig. 2.

Two-photon interference fringes. Squares: θs =0 degrees, circles: θs =45 degrees.

Fig. 3.
Fig. 3.

Idler count rates as a function of idler polarizer angle. Squares: θs =0 degrees, circles: θs =45 degrees.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R c = 1 2 μ α s α i .
R acc = ( 1 2 μ α s + d s ) · ( 1 2 μ α i + d i ) ,
V = I max I min I max + I min = R c R c + 2 R acc .
ρ = ( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 )
ρ = ( 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 ) .

Metrics