Abstract

In this letter we propose a compensating oblique lens which can realize super resolution imaging. The imaging structure consists of two parts constructed by metallodielectric films but positioned in different orientation. Super resolution optical imaging can be obtained with uniform light intensity and tunable magnification by changing parameters of the structure. Design principles and examples are given and illustrated with numerical simulation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. M. Born and E. Wolf, Principles of Optics, seventh expanded edition, (Cambridge, England, 1999).
  3. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
    [CrossRef]
  4. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  5. D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc. Am. B 23, 461-467 (2006).
    [CrossRef]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
    [CrossRef] [PubMed]
  7. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  8. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007).
    [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  10. I. I. Smolyaninov, Y. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
    [CrossRef] [PubMed]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  12. X. Li, S. He and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B 75, 045103 (2007).
    [CrossRef]
  13. B. Wood, J. B. Pendry and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B. 74, 115116 (2006).
    [CrossRef]
  14. D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  15. P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  16. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).
  17. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Express 16, 4217-4227 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (4)

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

X. Li, S. He and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B 75, 045103 (2007).
[CrossRef]

2006 (4)

B. Wood, J. B. Pendry and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B. 74, 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc. Am. B 23, 461-467 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
[CrossRef] [PubMed]

2005 (3)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2003 (1)

D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Phys. Rev. B (3)

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
[CrossRef]

X. Li, S. He and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B 75, 045103 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. B. (1)

B. Wood, J. B. Pendry and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B. 74, 115116 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

Science (3)

N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, seventh expanded edition, (Cambridge, England, 1999).

M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of OL (left) and COL (right), the permittivity of metal and dielectric should be restricted with little difference.

Fig. 2.
Fig. 2.

(a). Isofrequency curves of dispersion relation of the oblique lens structure with Re(εm )=-εd ; the thickness is 10nm for each film and the wavelength of incident light is 365nm. (b) (c) and (d) are numerical simulations of light deflection at the interface of two metallodielectric films structures with variant deflection angle as depicted in the figure. All of the films are 10nm in thickness, and the matched permittivities are εm =-2.4+0.24i, εd =2.4.

Fig. 3.
Fig. 3.

Geometrical relation of COL based on OL. i1 and i2 are object plane and image plane respectively. The compensation is to the lengths of the ray traces, so each beam from the input plane to the output plane will cover the same propagating length. The length for a fixed OL or COL is equal to the height of the structure.

Fig. 4.
Fig. 4.

Simulation results of the COL and OL with two oblique angles. (a) oblique angle of 36°; (b) oblique angle of 56°. Two objects with 80nm separation on the object plane are magnified on the image plane. The uneven intensity distribution of images in OL can be compensated in the COL.

Fig. 5.
Fig. 5.

(a). Theoretical and simulated magnification of COL and OL versus deflection angle. (b) Measured peak height ratio of the OL and the COL. (c) The brightness of images of OL and COL normalized by that of the objects.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

cos ( k zeff d ) = cos ( k mz d m ) cos ( k dz d d ) 1 2 ( ε d k mx ε m k dx + ε m k dx ε d k mx ) sin ( k mz d m ) sin ( k dz d d )
a + c = b + d
tan θ 1 = tan θ 2 1 tan θ 2
1 cos θ 1 ( sin θ 1 + cos θ 1 ) 2 + sin 2 θ 1

Metrics