Abstract

A waveguide coupler is designed and realized in a three-dimensional woodpile photonic crystal at microwave regime. This waveguide coupler shows good energy transfer property, which is confirmed through measurement of transmission spectrum, internal field distribution and surface field distribution using Agilent microwave network analyzer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  2. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998).
    [CrossRef]
  3. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Jouannopoulos, "Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths," Opt. Lett. 26, 286-288 (2001).
    [CrossRef]
  4. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 023902 (2003).
    [CrossRef] [PubMed]
  5. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, and L. C. Andreani, M. Belotti, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B. 72, 125322 (2005).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  7. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett. 74, 1522-1524 (1999).
    [CrossRef]
  8. P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes," J. Lightwave Technol. 17, 2058-2062 (1999).
    [CrossRef]
  9. J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm," Appl. Phys. Lett. 76, 2982 -2984 (2000).
    [CrossRef]
  10. A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon Technol. Lett. 15, 694-696 (2003).
    [CrossRef]
  11. S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002).
    [CrossRef]
  12. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
    [CrossRef]
  13. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, and K. Ishida and Y. Watanabe, "Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides," Appl. Phys. Lett. 83, 3236-3238 (2003).
    [CrossRef]
  14. A. Sharkawy, S. Shi, and D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express 10, 1048-1059 (2002).
    [PubMed]
  15. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001).
    [CrossRef]
  16. A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt. 40, 2247-2252 (2001).
    [CrossRef]
  17. Pochi Yeh and H. F. Taylor, "Contradirectional frequency-selective couplers for guided-wave optics," Appl. Opt. 19, 2848-2855 (1980).
    [CrossRef] [PubMed]
  18. T. Erdogan, "Optical add-drop multiplexer based on an asymmetric Bragg coupler," Opt Commun. 157, 249-264 (1998).
    [CrossRef]
  19. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
    [CrossRef]
  20. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Defect structures in a layer-by-layer photonic band-gap crystal," Phys. Rev. B 51, 13961-13965 (1995).
    [CrossRef]
  21. E. Ozbay and B. Temelkuran, "Reflection properties and defect formation in photonic crystals," Appl. Phys. Lett. 69, 743-745 (1996).
    [CrossRef]
  22. R. J. Liu, Z. Y. Li, F. Zhou, and D. Z. Zhang, "Near-field studies of microwave three-dimensional photonic crystals with waveguides," Opt. Express 15, 15531 (2007).
    [CrossRef] [PubMed]
  23. Z. Y. Li and K. M. Ho, "Waveguides in three-dimensional layer-by-layer photonic crystals," J. Opt. Soc. Am. B 20, 801 (2003).
    [CrossRef]

2007 (1)

2005 (1)

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, and L. C. Andreani, M. Belotti, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B. 72, 125322 (2005).
[CrossRef]

2003 (4)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 023902 (2003).
[CrossRef] [PubMed]

A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon Technol. Lett. 15, 694-696 (2003).
[CrossRef]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, and K. Ishida and Y. Watanabe, "Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides," Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

Z. Y. Li and K. M. Ho, "Waveguides in three-dimensional layer-by-layer photonic crystals," J. Opt. Soc. Am. B 20, 801 (2003).
[CrossRef]

2002 (3)

A. Sharkawy, S. Shi, and D. W. Prather, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express 10, 1048-1059 (2002).
[PubMed]

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

2001 (3)

2000 (1)

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm," Appl. Phys. Lett. 76, 2982 -2984 (2000).
[CrossRef]

1999 (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett. 74, 1522-1524 (1999).
[CrossRef]

P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes," J. Lightwave Technol. 17, 2058-2062 (1999).
[CrossRef]

1998 (2)

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998).
[CrossRef]

T. Erdogan, "Optical add-drop multiplexer based on an asymmetric Bragg coupler," Opt Commun. 157, 249-264 (1998).
[CrossRef]

1996 (2)

E. Ozbay and B. Temelkuran, "Reflection properties and defect formation in photonic crystals," Appl. Phys. Lett. 69, 743-745 (1996).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

1995 (1)

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Defect structures in a layer-by-layer photonic band-gap crystal," Phys. Rev. B 51, 13961-13965 (1995).
[CrossRef]

1994 (1)

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

1980 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (4)

E. Ozbay and B. Temelkuran, "Reflection properties and defect formation in photonic crystals," Appl. Phys. Lett. 69, 743-745 (1996).
[CrossRef]

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett. 74, 1522-1524 (1999).
[CrossRef]

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm," Appl. Phys. Lett. 76, 2982 -2984 (2000).
[CrossRef]

Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, and K. Ishida and Y. Watanabe, "Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides," Appl. Phys. Lett. 83, 3236-3238 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

IEEE Photon Technol. Lett. (1)

A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon Technol. Lett. 15, 694-696 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt Commun. (1)

T. Erdogan, "Optical add-drop multiplexer based on an asymmetric Bragg coupler," Opt Commun. 157, 249-264 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Defect structures in a layer-by-layer photonic band-gap crystal," Phys. Rev. B 51, 13961-13965 (1995).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998).
[CrossRef]

Phys. Rev. B. (1)

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, and L. C. Andreani, M. Belotti, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B. 72, 125322 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 023902 (2003).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic structure of (a) the woodpile 3D PC; (b) a type II Y straight waveguide; (c) directional coupler with two parallel type II Y straight waveguides

Fig. 2.
Fig. 2.

The calculated dispersion relations for an individual type II Y waveguide (the black solid circle) and a waveguide coupler composed of two parallel type IIY straight waveguides (the red solid circle) with w=0.75cm and d=2.75cm

Fig. 3.
Fig. 3.

The coupling length as a function of frequency obtained from the dispersion relation in Fig. 2

Fig. 4.
Fig. 4.

The calculated (a) internal field distribution in waveguides and (b) surface field distribution of energy transfer between two nearby parallel waveguides in the 3D woodpile PC for 12.4437GHz.

Fig. 5.
Fig. 5.

The transmission spectra measured at Port2 (black line) and Port3 (red line)

Fig. 6.
Fig. 6.

The measured internal field and surface field for 12.4437 GHz: (a) the original curve and smoothed curve in waveguide (W1) in which the source is located; (b) the original curve and smoothed curve in waveguide (W2) with no source; (c) the comparison of the smoothed curves in W 1 and W 2; (d) the surface field with 7 layers above the parallel waveguides layer.

Fig. 7.
Fig. 7.

The measured internal field and surface field for 12.6406 GHz: (a) the comparison of the smoothed curves in W 1 and W 2; (b) the surface field with 7 layers above the parallel waveguides layer.

Fig. 8.
Fig. 8.

The measured internal field and surface field for 12.8843 GHz: (a) the comparison of the smoothed curves in W 1 and W 2; (b) the surface field with 7 layers above the parallel waveguides layer.

Metrics