Abstract

Periodically poled crystalline materials are extremely attractive for processes such as second harmonic generation and optical parametric generation due to their very high conversion efficiency. For optimal performance, fabrication of poled regions with sub-micron tolerance is required. In this paper we introduce multi-photon laser scanning luminescence microscopy as a powerful minimally-invasive measurement technique which provides information about internal device structure with high spatial resolution that cannot be easily obtained with existing methods. A comparative study of confocal and multi-photon imaging of periodically poled crystalline materials is also performed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. E. Myers and W. R. Bosenberg, "Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997).
    [CrossRef]
  2. E. J. Lim, M. M. Fejer, and R. L. Byer, "2nd-harmonic generation of green light in periodically poled planar lithium-niobate wave-guides," Electron. Lett. 25, 174-175 (1989).
    [CrossRef]
  3. L. E. Myers, G. D. Miller, R. C. Eckhardt, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched 1.064µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3," Opt. Lett. 20, 52-54 (1995).
    [CrossRef] [PubMed]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched 2nd-harmonic generation - tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  5. V. Dierolf and C. Sandmann, "Inspection of periodically poled waveguide devices by confocal luminescence microscopy," Appl. Phys. B 78, 363-366 (2004).
    [CrossRef]
  6. A. Rosenfeldt and M. Florsheimer, "Nondestructive remote imaging of ferroelectric c domain distributions with high three-dimensional resolution," Appl. Phys. B 73, 523-529 (2001).
    [CrossRef]
  7. R. W. Boyd, Nonlinear Optics, Second Edition (Academic Press, 2003) 107-111.
  8. Y. Uesu, H. Yokota, S. Kawado, and J. Kaneshiro, "Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography," Appl. Phys. Lett. 91, 182904 (2007).
    [CrossRef]
  9. D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, "All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging," IEEE J. Sel. Top. Quantum Electron 2, 1051-1065 (1996).
    [CrossRef]
  10. W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  11. K. Moutzouris, F. Sotier, F. Adler, and A. Leitenstorfer, "Highly efficient second, third and fourth harmonic generation from a two-branch femtosecond erbium fiber source," Opt. Express 14, 1905-1912 (2006).
    [CrossRef] [PubMed]
  12. K. Kawase, J. Shikata, H. Ito, "Narrow-linewidth tunable terahertz-wave sources using nonlinear optics," Top. Appl. Phys. 89, 397-423 (2003).
  13. L. E. Myers, R. C. Eckhardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995)
    [CrossRef]
  14. Y. Wang, V. Petrov, Y. J. Ding, and Y. Zheng, "Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate," Appl. Phys. Lett. 73, 873-875 (1998).
    [CrossRef]
  15. H. W. Kim, S. H. Shim, and J. W. Lee, "Growth of MgO thin films with subsequent fabrication of ZnO rods: Structural and photoluminescence properties," Thin Solid Films 515, 6433-6437 (2007).
    [CrossRef]
  16. X. He and D. Xue, "Doping mechanism of optical-damage-resistant ions in lithium niobate crystals," Opt. Commun. 265, 537-541 (2006).
    [CrossRef]

2007

Y. Uesu, H. Yokota, S. Kawado, and J. Kaneshiro, "Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography," Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

H. W. Kim, S. H. Shim, and J. W. Lee, "Growth of MgO thin films with subsequent fabrication of ZnO rods: Structural and photoluminescence properties," Thin Solid Films 515, 6433-6437 (2007).
[CrossRef]

2006

2004

V. Dierolf and C. Sandmann, "Inspection of periodically poled waveguide devices by confocal luminescence microscopy," Appl. Phys. B 78, 363-366 (2004).
[CrossRef]

2003

K. Kawase, J. Shikata, H. Ito, "Narrow-linewidth tunable terahertz-wave sources using nonlinear optics," Top. Appl. Phys. 89, 397-423 (2003).

2001

A. Rosenfeldt and M. Florsheimer, "Nondestructive remote imaging of ferroelectric c domain distributions with high three-dimensional resolution," Appl. Phys. B 73, 523-529 (2001).
[CrossRef]

1998

Y. Wang, V. Petrov, Y. J. Ding, and Y. Zheng, "Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate," Appl. Phys. Lett. 73, 873-875 (1998).
[CrossRef]

1997

L. E. Myers and W. R. Bosenberg, "Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997).
[CrossRef]

1996

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, "All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging," IEEE J. Sel. Top. Quantum Electron 2, 1051-1065 (1996).
[CrossRef]

1995

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched 2nd-harmonic generation - tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

1989

E. J. Lim, M. M. Fejer, and R. L. Byer, "2nd-harmonic generation of green light in periodically poled planar lithium-niobate wave-guides," Electron. Lett. 25, 174-175 (1989).
[CrossRef]

Appl. Phys. B

V. Dierolf and C. Sandmann, "Inspection of periodically poled waveguide devices by confocal luminescence microscopy," Appl. Phys. B 78, 363-366 (2004).
[CrossRef]

A. Rosenfeldt and M. Florsheimer, "Nondestructive remote imaging of ferroelectric c domain distributions with high three-dimensional resolution," Appl. Phys. B 73, 523-529 (2001).
[CrossRef]

Appl. Phys. Lett.

Y. Uesu, H. Yokota, S. Kawado, and J. Kaneshiro, "Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography," Appl. Phys. Lett. 91, 182904 (2007).
[CrossRef]

Y. Wang, V. Petrov, Y. J. Ding, and Y. Zheng, "Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate," Appl. Phys. Lett. 73, 873-875 (1998).
[CrossRef]

Electron. Lett.

E. J. Lim, M. M. Fejer, and R. L. Byer, "2nd-harmonic generation of green light in periodically poled planar lithium-niobate wave-guides," Electron. Lett. 25, 174-175 (1989).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched 2nd-harmonic generation - tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

L. E. Myers and W. R. Bosenberg, "Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, "All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging," IEEE J. Sel. Top. Quantum Electron 2, 1051-1065 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

X. He and D. Xue, "Doping mechanism of optical-damage-resistant ions in lithium niobate crystals," Opt. Commun. 265, 537-541 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Science

W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Thin Solid Films

H. W. Kim, S. H. Shim, and J. W. Lee, "Growth of MgO thin films with subsequent fabrication of ZnO rods: Structural and photoluminescence properties," Thin Solid Films 515, 6433-6437 (2007).
[CrossRef]

Top. Appl. Phys.

K. Kawase, J. Shikata, H. Ito, "Narrow-linewidth tunable terahertz-wave sources using nonlinear optics," Top. Appl. Phys. 89, 397-423 (2003).

Other

R. W. Boyd, Nonlinear Optics, Second Edition (Academic Press, 2003) 107-111.

Supplementary Material (1)

» Media 1: AVI (2373 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The effect of reversal of the nonlinear coefficient in a periodically poled structure

Fig. 2.
Fig. 2.

Experimental setup for both the confocal LSM and multi-photon LSM methods. An upright microscope was attached to a laser scanning system and a 20×/0.5 N.A. objective lens was used.

Fig. 3.
Fig. 3.

Comparison of 3D reconstructions obtained using a) confocal and b) multi-photon laser scanning luminescence microscopy.

Fig. 4.
Fig. 4.

A movie of the 3D reconstruction of the luminescent MgO regions within the MgO:ppLN crystal obtained using multi-photon LSM and Volocity 4 software (2.32MB). [Media 1]

Fig. 5.
Fig. 5.

(a). Comparison of the MgO:ppLN crystal surface view (XY) with the cross sectional view (XZ). Images were taken from the 3D reconstruction of the crystal obtained using multi-photon LSM excited luminescence. Figure 5(b) Close-up image taken from Column 1 in Fig. 5(a). Measurements of the crystal periodicity were easily obtained using Volocity 4 image analysis software.

Metrics