Abstract

We analyze cloaking of transverse electric (TE) fields through homogenization of radially symmetric metallic structures. The two-dimensional circular cloak consists of concentric layers cut into a large number of small infinitely conducting sectors which is equivalent to a highly anisotropic permittivity. We find that a wave radiated by a magnetic line current source located a couple of wavelengths away from the cloak is almost unperturbed in magnitude but not in phase. Our structured cloak is shown to work for different wavelengths provided they are ten times larger than the outermost sectors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. B. Pendry, D. Shurig, D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," New J. Phys.  8, 247 (2006).
    [CrossRef]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr,and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  5. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007).
    [CrossRef] [PubMed]
  6. R. C. McPhedran, N. A. Nicorovici, and G. W. Milton,"Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
    [CrossRef]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  8. J. B. Pendry and S. A. Ramakrishna, "Focussing light using negative refraction," J. Phys. Cond. Matter 15, 6345-6364 (2003).
    [CrossRef]
  9. D. Maystre and S. Enoch, "Perfect lenses with left-handed material: Alice’s mirror?," J. Opt. Soc. Am. A 21, 122 (2004).
    [CrossRef]
  10. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
    [CrossRef]
  11. G. W. Milton and N. A. Nicorovici, "On the cloaking effects associated with anomalous localised resonance," Proc. Roy. Lond. A 462, 3027-3059 (2006).
    [CrossRef]
  12. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2007).
    [CrossRef] [PubMed]
  13. W. Cai, U. K. Chettiar, A. V. Kildiev and V. M. Shalaev, "Optical Cloaking with metamaterials," Nature 1, 224-227 (2007).
  14. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express 15, 12717-12734 (2007).
    [CrossRef] [PubMed]
  15. S. Guenneau and F. Zolla, "Homogenization of three-dimensional finite photonic crystals," JEWA 14, 529-530 (2000) &Progress In Electromagnetics Research 27, 91-127 (2000).
  16. D. P. Gaillot, C. Croenne and D. Lippens, "An all-dielectric route for terahertz cloaking," Opt. Express 16, 3986-3992 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (4)

2006 (5)

J. B. Pendry, D. Shurig, D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," New J. Phys.  8, 247 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr,and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

G. W. Milton and N. A. Nicorovici, "On the cloaking effects associated with anomalous localised resonance," Proc. Roy. Lond. A 462, 3027-3059 (2006).
[CrossRef]

2005 (1)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

2004 (1)

2003 (1)

J. B. Pendry and S. A. Ramakrishna, "Focussing light using negative refraction," J. Phys. Cond. Matter 15, 6345-6364 (2003).
[CrossRef]

2000 (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

S. Guenneau and F. Zolla, "Homogenization of three-dimensional finite photonic crystals," JEWA 14, 529-530 (2000) &Progress In Electromagnetics Research 27, 91-127 (2000).

1994 (1)

R. C. McPhedran, N. A. Nicorovici, and G. W. Milton,"Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Cond. Matter (1)

J. B. Pendry and S. A. Ramakrishna, "Focussing light using negative refraction," J. Phys. Cond. Matter 15, 6345-6364 (2003).
[CrossRef]

Nature (1)

W. Cai, U. K. Chettiar, A. V. Kildiev and V. M. Shalaev, "Optical Cloaking with metamaterials," Nature 1, 224-227 (2007).

New J. Phys. (1)

U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," New J. Phys.  8, 247 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

R. C. McPhedran, N. A. Nicorovici, and G. W. Milton,"Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Proc. Roy. Lond. A (1)

G. W. Milton and N. A. Nicorovici, "On the cloaking effects associated with anomalous localised resonance," Proc. Roy. Lond. A 462, 3027-3059 (2006).
[CrossRef]

Progress In Electromagnetics Research (1)

S. Guenneau and F. Zolla, "Homogenization of three-dimensional finite photonic crystals," JEWA 14, 529-530 (2000) &Progress In Electromagnetics Research 27, 91-127 (2000).

Rep. Prog. Phys. (1)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

Science (3)

J. B. Pendry, D. Shurig, D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr,and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Left: Geometry of the structured infinitely conducting cloak. The structure consists of 256 angular sectors. Right: Diffraction of the field radiated by a magnetic wire source by an infinitely conducting F-shaped obstacle surrounded by a homogeneous dielectric anisotropic coating with effective permittivity ε h o m ¯ ¯ = diag ( 1.7 , 8.2 , ) and effective transmission conditions n ( ε h o m ¯ ¯ 1 ( + i γ ) H hom ) | r = n ( + i γ ) H hom | r + on its inner and outer boundaries (r=R 1=0.144 and r=R 2=0.4). The frequency ν is equal to 3.5.

Fig. 2.
Fig. 2.

Real part ℜe(H 3) of the longitudinal component H 3 of the magnetic field along the x 2-axis. The origin of the x 2 axis is taken at point (4,4) of Fig. 3 and it ends at point (0,0). A magnetic line source of wavelength λ=c/ν=c/3.5 is located at point (2.3,2.3). The vertical thick bold lines represent the outer boundary of the cloak.

Fig. 3.
Fig. 3.

2D plot of the real part ℜe(H 3) of the longitudinal component H 3 of the magnetic field radiated by a harmonic line current source of wavelength λ=c/ν. Left panel: Diffraction by an infinitely conducting F-shaped obstacle; Right panel: Diffraction by an infinitely conducting F-shaped obstacle surrounded by the structured cloak. When the frequency ν increases, the diffraction worsens and cloaking becomes less effective.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

r = R 1 + r ( R 2 R 1 ) R 2 , 0 r R 2 ,
θ = θ , 0 < θ 2 π ,
x 3 = x 3 , x 3 I R ,
ε r = μ r = r R 1 r , ε θ = μ θ = r r R 1 , ε 3 = μ 3 = ( R 2 R 2 R 1 ) 2 r R 1 r .
ε r = ( R 2 R 2 R 1 ) 2 ( r R 1 r ) 2 , ε θ = ( R 2 R 2 R 1 ) 2 , μ 3 = 1 .
ε h o m ¯ ¯ = 1 area ( Y * ) ( area ( Y * ) 0 0 0 area ( Y * ) 0 0 0 ) ( ϕ rr ϕ 0 ϕ θr ϕ θθ 0 0 0 0 ) ,
i , j { r , θ } , ϕ ij = < V j y i > Y * = < V i y j > Y * = < V i · V j > Y * ,
𝒦 j : Δ V j = 0 , in Y * = Y B , and V j n = n j , on B ,

Metrics