Abstract

We propose a guidance mechanism in hollow-core optical fibres dominated by antiresonant reflection from struts of solid material in the cladding. Resonances with these struts determine the high loss bands of the fibres, and vector effects become important in determining the width of these bands through the non-degeneracy of the TE and TM polarised strut modes near cut-off. Away from resonances the light is confined through the inhibited coupling mechanism. This is demonstrated in a square lattice hollow-core microstructured polymer optical fibre.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. St.J. Russell, "Photonic-cystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  2. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, "Hollow-core microstructured polymer optical fibres," Opt. Lett. 31, 172-174 (2006).
    [CrossRef] [PubMed]
  3. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1942 (1995).
    [CrossRef]
  4. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fibre cladding," Opt. Express 15, 325-338 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-325.
    [CrossRef] [PubMed]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  6. A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7713.
    [CrossRef] [PubMed]
  7. T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, and P. St. J. Russell, "Modelling of a novel hollow-core photonic crystal fibre," in Proc. CLEO, Baltimore MA 1-6 June 2003.
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and photonic guidance of multi-octave optical frequency combs," Science 318, 1118-1121 (2007).
    [CrossRef] [PubMed]
  9. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express 15, 12680-12685, http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-12680.
    [PubMed]
  10. N. A. Issa, and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibres," J. Lightwave Technol. 21, 1005-1012 (2003).
    [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, UK, 1983).
  12. N. M. Litchinitser, A. K Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1595 (2002).
    [CrossRef]
  13. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. S. Russell, "Scaling laws and vector effects in bandgap guiding fibers," Opt. Express 12, 69-74 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-1-69.
    [CrossRef] [PubMed]
  14. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-4135.
    [CrossRef] [PubMed]

2007 (3)

2006 (3)

2004 (1)

2003 (1)

2002 (2)

N. M. Litchinitser, A. K Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1595 (2002).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

1995 (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1942 (1995).
[CrossRef]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1942 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (2)

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and photonic guidance of multi-octave optical frequency combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Other (3)

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express 15, 12680-12685, http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-12680.
[PubMed]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, UK, 1983).

T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, and P. St. J. Russell, "Modelling of a novel hollow-core photonic crystal fibre," in Proc. CLEO, Baltimore MA 1-6 June 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of original stack of tubes (grey) and the resulting lattice (black). (b) Optical microscope image of a fibre cross section.

Fig. 2.
Fig. 2.

Deviation of the mode from cut-off on a linear scale (a) and log scale (b) calculated for TE and TM modes for the scalar case N=1 (black curves), and the TM modes for N=0.67 (blue curves) and 0.5 (red curves), using n cl/n co=1.0/1.49 and 1.0/2.0 respectively. (c) Fraction of power of the strut modes that is concentrated in the strut itself η.

Fig. 3.
Fig. 3.

Transmission spectrum of the square-lattice fibres (lower) and deviation from cut-off for the TE (black) and TM (blue) modes supported by the struts in the cladding (upper) as a function of normalised frequency V/π and normalised wavelength λ/δ. Here, N=1.0/1.49=0.67. The transmission presented is a compilation of spectra from fibres of various diameters, all approximately 2 m in length. An “effective” cut-off of (V-U)/π=4×10-3 was used for the TM modes. The error bars reflect an error in V/π arising from variations in strut thickness and refractive index. Inset shows an example of the near field of the output (superimposed on an image of the cladding structure) which follows the core’s octagonal shape as expected.

Fig. 4.
Fig. 4.

Transmission of a 0.3 m length of fibre with air-filled holes (black curve, N=0.67) and water-filled holes (red curve, N=0.89). The high-frequency edge of the high loss region shifts to lower frequency as a result of the reduction in index contrast. The error bar indicates a shift of 0.03 as predicted by calculations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π λ δ 2 n co 2 n cl 2 = 2 π λ δ 2 n 2 1 ,
U = 2 π λ δ 2 n co 2 n eff 2 .
κ δ = 2 π λ δ n 2 1 = 2 V = m π ,
λ δ = 2 n 2 1 m = 2.21 m ,
V U = N 4 m π 4 ( V m π 2 ) 2 , m > 0
V U = N 4 V 3 2 , m = 0
N = n cl n co TM modes
N = 1 TE modes .

Metrics