Abstract

The mean size of fluorescent nanoparticles produced in a propane flame has been measured with an in-situ technique employing a femtosecond laser to excite the sample and a streak camera for time-resolved detection of the fluorescence. The time profile of the fluorescence anisotropy showed a Gaussian behaviour, typical of free rotor reorientation. By measuring its width, we estimated an average carbon particle diameter of 3.3 nm, thus confirming the existence of combustion produced nanoparticles. The technique proves to be applicable to the study of gas-phase nanoparticles, both in combustion and environmental studies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.
  2. P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
    [CrossRef]
  3. L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
    [CrossRef] [PubMed]
  4. H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
    [CrossRef] [PubMed]
  5. M. M. Maricq, “The dynamics of electrically charged soot particles in a premixed ethylene flame,” Combust. Flame 241, 406–416 (2005).
    [CrossRef]
  6. J. Happold, H.-H. Grotheer, and M. Aigner, “Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry,” Rapid Commun. Mass. Spectrom. 21, 1247–1253 (2005).
    [CrossRef]
  7. R. A. Dobbins, “Hydrocarbon nanoparticles formed in flames and Diesel engines,” Aerosol Sci. Tech. 41, 485–496 (2007).
    [CrossRef]
  8. H. Bockhorn, ed., Soot Formation in Combustion: Mechanisms and Models, (Springer-Verlag, Berlin, 1994)
    [CrossRef]
  9. B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
    [CrossRef]
  10. M. M. Maricq, “Size and charge of soot particles in rich premixed flames,” Combust. Flame 137, 340–350 (2004).
    [CrossRef]
  11. L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, “Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis,” in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631–638.
  12. L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
    [CrossRef] [PubMed]
  13. A. Bruno, P. Minutolo, and C. de Lisio, “Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems,” Opt. Express 13, 5393–5408 (2005).
    [CrossRef] [PubMed]
  14. A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
    [CrossRef]
  15. A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
    [CrossRef]
  16. A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
    [CrossRef]
  17. D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
    [CrossRef]
  18. P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
    [CrossRef]
  19. A. D’Anna, A. D’Alessio, and P. Minutolo, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., (Springer-Verlag, Berlin, 1994).
  20. P. Minutolo, G. Gambi, and A. D’Alessio, “Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit” in 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 1461–1469.
  21. F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements,” Appl. Phys. B 72, 465–478 (2001).
    [CrossRef]
  22. F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements,” Appl. Phys. B 72, 479–489 (2001).
    [CrossRef]
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publisher, New York, U.S.2002).
  24. P. Debye, Polar Molecules (Dover, New York, 1929).
  25. F. Perrin, “Mouvement brownien d’un ellipsoïde: (I) Dispersion diélectrique pour des molécules ellipsoïdales,”J. Phys. Radium 5, 497–511 (1934).
    [CrossRef]
  26. F. Perrin, “Mouvement brownien d’un ellipsoïde: (II) Rotation libre et depolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales,” J. Phys. Radium 7, 1–11 (1936).
    [CrossRef]
  27. S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
    [CrossRef]
  28. T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
    [CrossRef] [PubMed]
  29. J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
    [CrossRef]
  30. R. G. Gordon, “Molecular motion in infrared and Raman spectra,” J. Chem. Phys. 43, 1307–1312 (1965).
    [CrossRef]
  31. R. G. Gordon, “On the rotational diffusion of molecules,” J. Chem. Phys. 44, 1830–1836 (1966).
    [CrossRef]
  32. J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
    [CrossRef]
  33. A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotation in Gases and Liquids (Cambridge University Press, Cambridge, U.K.,1994).
    [CrossRef]
  34. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).
  35. E. Kluk and J. G. Powles, “Friction model for the reorientation of linear molecules in fluids,” Mol. Phys. 301109–1116 (1975).
    [CrossRef]
  36. G. T. Evans, R. G. Cole, and D. K. Hoffman, “A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres,” J. Chem. Phys. 77, 3209–3220 (1982).
    [CrossRef]
  37. C. Wan and C. K. Johnson, “Time-resolved two-photon induced anisotropy decay: The rotational diffusion regime,” J. Chem. Phys. 101, 10283–10291 (1994).
    [CrossRef]
  38. S.-J. Chen and B. W. Van Der Meer, “Theory of two-photon induced fluorescence anisotropy decay in membranes”, Biophys. J. 64, 1567–1575 (1993).
    [CrossRef] [PubMed]
  39. I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
    [CrossRef]

2007 (2)

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
[CrossRef]

R. A. Dobbins, “Hydrocarbon nanoparticles formed in flames and Diesel engines,” Aerosol Sci. Tech. 41, 485–496 (2007).
[CrossRef]

2006 (3)

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
[CrossRef]

S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
[CrossRef]

2005 (3)

M. M. Maricq, “The dynamics of electrically charged soot particles in a premixed ethylene flame,” Combust. Flame 241, 406–416 (2005).
[CrossRef]

J. Happold, H.-H. Grotheer, and M. Aigner, “Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry,” Rapid Commun. Mass. Spectrom. 21, 1247–1253 (2005).
[CrossRef]

A. Bruno, P. Minutolo, and C. de Lisio, “Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems,” Opt. Express 13, 5393–5408 (2005).
[CrossRef] [PubMed]

2004 (2)

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

M. M. Maricq, “Size and charge of soot particles in rich premixed flames,” Combust. Flame 137, 340–350 (2004).
[CrossRef]

2003 (4)

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
[CrossRef]

2001 (3)

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements,” Appl. Phys. B 72, 465–478 (2001).
[CrossRef]

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements,” Appl. Phys. B 72, 479–489 (2001).
[CrossRef]

L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
[CrossRef] [PubMed]

1998 (3)

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
[CrossRef]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

1997 (1)

J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
[CrossRef]

1995 (1)

I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

1994 (1)

C. Wan and C. K. Johnson, “Time-resolved two-photon induced anisotropy decay: The rotational diffusion regime,” J. Chem. Phys. 101, 10283–10291 (1994).
[CrossRef]

1993 (1)

S.-J. Chen and B. W. Van Der Meer, “Theory of two-photon induced fluorescence anisotropy decay in membranes”, Biophys. J. 64, 1567–1575 (1993).
[CrossRef] [PubMed]

1982 (1)

G. T. Evans, R. G. Cole, and D. K. Hoffman, “A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres,” J. Chem. Phys. 77, 3209–3220 (1982).
[CrossRef]

1975 (1)

E. Kluk and J. G. Powles, “Friction model for the reorientation of linear molecules in fluids,” Mol. Phys. 301109–1116 (1975).
[CrossRef]

1966 (1)

R. G. Gordon, “On the rotational diffusion of molecules,” J. Chem. Phys. 44, 1830–1836 (1966).
[CrossRef]

1965 (1)

R. G. Gordon, “Molecular motion in infrared and Raman spectra,” J. Chem. Phys. 43, 1307–1312 (1965).
[CrossRef]

1936 (1)

F. Perrin, “Mouvement brownien d’un ellipsoïde: (II) Rotation libre et depolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales,” J. Phys. Radium 7, 1–11 (1936).
[CrossRef]

1934 (1)

F. Perrin, “Mouvement brownien d’un ellipsoïde: (I) Dispersion diélectrique pour des molécules ellipsoïdales,”J. Phys. Radium 5, 497–511 (1934).
[CrossRef]

Aigner, M.

J. Happold, H.-H. Grotheer, and M. Aigner, “Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry,” Rapid Commun. Mass. Spectrom. 21, 1247–1253 (2005).
[CrossRef]

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

Aldén, M.

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements,” Appl. Phys. B 72, 465–478 (2001).
[CrossRef]

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements,” Appl. Phys. B 72, 479–489 (2001).
[CrossRef]

Alfè, M.

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

Apicella, B.

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

Balthasar, M.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Barbella, R.

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

Barone, A. C.

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

Barth, K.-L.

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

Basile, G.

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
[CrossRef] [PubMed]

Baskin, J. S.

J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
[CrossRef]

J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
[CrossRef]

Borghese, A.

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

Bruno, A.

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
[CrossRef]

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
[CrossRef]

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

A. Bruno, P. Minutolo, and C. de Lisio, “Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems,” Opt. Express 13, 5393–5408 (2005).
[CrossRef] [PubMed]

D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotation in Gases and Liquids (Cambridge University Press, Cambridge, U.K.,1994).
[CrossRef]

Cassara, L.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Cecere, D.

D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
[CrossRef]

Chachisvilis, M.

J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
[CrossRef]

J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
[CrossRef]

Chen, S.-J.

S.-J. Chen and B. W. Van Der Meer, “Theory of two-photon induced fluorescence anisotropy decay in membranes”, Biophys. J. 64, 1567–1575 (1993).
[CrossRef] [PubMed]

Ciajolo, A.

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

Cole, R. G.

G. T. Evans, R. G. Cole, and D. K. Hoffman, “A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres,” J. Chem. Phys. 77, 3209–3220 (1982).
[CrossRef]

D’Alessio, A.

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
[CrossRef]

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
[CrossRef]

D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
[CrossRef]

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
[CrossRef] [PubMed]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, “Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis,” in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631–638.

P. Minutolo, G. Gambi, and A. D’Alessio, “Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit” in 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 1461–1469.

A. D’Anna, A. D’Alessio, and P. Minutolo, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., (Springer-Verlag, Berlin, 1994).

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

D’Anna, A.

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

A. D’Anna, A. D’Alessio, and P. Minutolo, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., (Springer-Verlag, Berlin, 1994).

D’Orsi, A.

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

De Filippo, A.

L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, “Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis,” in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631–638.

de Lisio, C.

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
[CrossRef]

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
[CrossRef]

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

A. Bruno, P. Minutolo, and C. de Lisio, “Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems,” Opt. Express 13, 5393–5408 (2005).
[CrossRef] [PubMed]

Debye, P.

P. Debye, Polar Molecules (Dover, New York, 1929).

Dobbins, R. A.

R. A. Dobbins, “Hydrocarbon nanoparticles formed in flames and Diesel engines,” Aerosol Sci. Tech. 41, 485–496 (2007).
[CrossRef]

Evans, G. T.

G. T. Evans, R. G. Cole, and D. K. Hoffman, “A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres,” J. Chem. Phys. 77, 3209–3220 (1982).
[CrossRef]

Gambi, G.

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, and A. D’Alessio, “Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit” in 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 1461–1469.

Gordon, R. G.

R. G. Gordon, “On the rotational diffusion of molecules,” J. Chem. Phys. 44, 1830–1836 (1966).
[CrossRef]

R. G. Gordon, “Molecular motion in infrared and Raman spectra,” J. Chem. Phys. 43, 1307–1312 (1965).
[CrossRef]

Grotheer, H.-H.

J. Happold, H.-H. Grotheer, and M. Aigner, “Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry,” Rapid Commun. Mass. Spectrom. 21, 1247–1253 (2005).
[CrossRef]

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

Gryczynski, I.

I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

Gupta, M.

J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
[CrossRef]

J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
[CrossRef]

Gurzadyan, G.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Gustavsson, T.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Hansen, J.-P.

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

Happold, J.

J. Happold, H.-H. Grotheer, and M. Aigner, “Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry,” Rapid Commun. Mass. Spectrom. 21, 1247–1253 (2005).
[CrossRef]

Hoffman, D. K.

G. T. Evans, R. G. Cole, and D. K. Hoffman, “A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres,” J. Chem. Phys. 77, 3209–3220 (1982).
[CrossRef]

Inamdar, S. R.

S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
[CrossRef]

Johnson, C. K.

C. Wan and C. K. Johnson, “Time-resolved two-photon induced anisotropy decay: The rotational diffusion regime,” J. Chem. Phys. 101, 10283–10291 (1994).
[CrossRef]

Johnston, M. V.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Kluk, E.

E. Kluk and J. G. Powles, “Friction model for the reorientation of linear molecules in fluids,” Mol. Phys. 301109–1116 (1975).
[CrossRef]

Kraft, M.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Lakowicz, J. R.

I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publisher, New York, U.S.2002).

Lanzuolo, G.

L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, “Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis,” in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631–638.

Malak, H.

I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

Mannekutla, J. R.

S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
[CrossRef]

Marguet, S.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Maricq, M. M.

M. M. Maricq, “The dynamics of electrically charged soot particles in a premixed ethylene flame,” Combust. Flame 241, 406–416 (2005).
[CrossRef]

M. M. Maricq, “Size and charge of soot particles in rich premixed flames,” Combust. Flame 137, 340–350 (2004).
[CrossRef]

McDonald, I. R.

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

Metz, T.

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements,” Appl. Phys. B 72, 465–478 (2001).
[CrossRef]

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements,” Appl. Phys. B 72, 479–489 (2001).
[CrossRef]

Mialocq, J.-C.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Minutolo, P.

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
[CrossRef]

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
[CrossRef]

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

A. Bruno, P. Minutolo, and C. de Lisio, “Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems,” Opt. Express 13, 5393–5408 (2005).
[CrossRef] [PubMed]

D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
[CrossRef]

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
[CrossRef] [PubMed]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, and A. D’Alessio, “Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit” in 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 1461–1469.

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

A. D’Anna, A. D’Alessio, and P. Minutolo, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., (Springer-Verlag, Berlin, 1994).

Mulimani, B. G.

S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
[CrossRef]

Ossler, F.

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements,” Appl. Phys. B 72, 465–478 (2001).
[CrossRef]

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements,” Appl. Phys. B 72, 479–489 (2001).
[CrossRef]

Perrin, F.

F. Perrin, “Mouvement brownien d’un ellipsoïde: (II) Rotation libre et depolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales,” J. Phys. Radium 7, 1–11 (1936).
[CrossRef]

F. Perrin, “Mouvement brownien d’un ellipsoïde: (I) Dispersion diélectrique pour des molécules ellipsoïdales,”J. Phys. Radium 5, 497–511 (1934).
[CrossRef]

Pokorny, H.

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

Pommeret, S.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Powles, J. G.

E. Kluk and J. G. Powles, “Friction model for the reorientation of linear molecules in fluids,” Mol. Phys. 301109–1116 (1975).
[CrossRef]

Savadatti, M. I.

S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
[CrossRef]

Sgro, L. A.

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
[CrossRef] [PubMed]

L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, “Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis,” in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631–638.

Temkin, S. I.

A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotation in Gases and Liquids (Cambridge University Press, Cambridge, U.K.,1994).
[CrossRef]

Thierley, M.

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

Van Der Meer, B. W.

S.-J. Chen and B. W. Van Der Meer, “Theory of two-photon induced fluorescence anisotropy decay in membranes”, Biophys. J. 64, 1567–1575 (1993).
[CrossRef] [PubMed]

van der Meulen, P.

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Wan, C.

C. Wan and C. K. Johnson, “Time-resolved two-photon induced anisotropy decay: The rotational diffusion regime,” J. Chem. Phys. 101, 10283–10291 (1994).
[CrossRef]

Wang, H.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Wexler, A. S.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Yang, Z.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Zewail, A. H.

J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
[CrossRef]

J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
[CrossRef]

Zhao, B.

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

Aerosol Sci. Tech. (1)

R. A. Dobbins, “Hydrocarbon nanoparticles formed in flames and Diesel engines,” Aerosol Sci. Tech. 41, 485–496 (2007).
[CrossRef]

Appl. Phys. B (2)

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements,” Appl. Phys. B 72, 465–478 (2001).
[CrossRef]

F. Ossler, T. Metz, and M. Aldén, “Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements,” Appl. Phys. B 72, 479–489 (2001).
[CrossRef]

Biophys. J. (1)

S.-J. Chen and B. W. Van Der Meer, “Theory of two-photon induced fluorescence anisotropy decay in membranes”, Biophys. J. 64, 1567–1575 (1993).
[CrossRef] [PubMed]

Chem. Phys. Lett. (3)

I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
[CrossRef]

S. R. Inamdar, J. R. Mannekutla, B. G. Mulimani, and M. I. Savadatti, “Rotational dynamics of nonpolar laser dyes,” Chem. Phys. Lett. 429, 141–146 (2006).
[CrossRef]

J. S. Baskin, M. Gupta, M. Chachisvilis, and A. H. Zewail, “Femtosecond dynamics of microscopic friction: nature of coherent versus diffusive motion from gas to liquid density,” Chem. Phys. Lett. 275, 437–444 (1997).
[CrossRef]

Chemosphere (3)

L. A. Sgro, G. Basile, A. C. Barone, A. D’Anna, P. Minutolo, A. Borghese, and A. D’Alessio, “Detection of combustion formed nanoparticles,” Chemosphere 51, 1079–1090 (2003).
[CrossRef] [PubMed]

H.-H. Grotheer, H. Pokorny, K.-L. Barth, M. Thierley, and M. Aigner, “Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames,” Chemosphere 57, 1335–1342 (2004).
[CrossRef] [PubMed]

L. A. Sgro, P. Minutolo, G. Basile, and A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames,” Chemosphere 42, 671–680 (2001).
[CrossRef] [PubMed]

Combust. Flame (4)

M. M. Maricq, “The dynamics of electrically charged soot particles in a premixed ethylene flame,” Combust. Flame 241, 406–416 (2005).
[CrossRef]

B. Zhao, Z. Yang, M. V. Johnston, H. Wang, A. S. Wexler, M. Balthasar, and M. Kraft, “Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame,” Combust. Flame 133, 173–188 (2003).
[CrossRef]

M. M. Maricq, “Size and charge of soot particles in rich premixed flames,” Combust. Flame 137, 340–350 (2004).
[CrossRef]

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy,” Combust. Flame 151, 472–481 (2007).
[CrossRef]

J. Aerosol Sci. (2)

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

P. Minutolo, G. Gambi, A. D’Anna, and A. D’Alessio, “The spectroscopic characterization of UV absorbing nanoparticles in fuel rich premixed flames,” J. Aerosol Sci. 29, 397–409 (1998).
[CrossRef]

J. Chem. Phys. (4)

G. T. Evans, R. G. Cole, and D. K. Hoffman, “A kinetic theory calculation of the orientational correlation time of a rotorlike molecule in a dense fluid of spheres,” J. Chem. Phys. 77, 3209–3220 (1982).
[CrossRef]

C. Wan and C. K. Johnson, “Time-resolved two-photon induced anisotropy decay: The rotational diffusion regime,” J. Chem. Phys. 101, 10283–10291 (1994).
[CrossRef]

R. G. Gordon, “Molecular motion in infrared and Raman spectra,” J. Chem. Phys. 43, 1307–1312 (1965).
[CrossRef]

R. G. Gordon, “On the rotational diffusion of molecules,” J. Chem. Phys. 44, 1830–1836 (1966).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. Bruno, P. Minutolo, C. de Lisio, and A. D’Alessio, “Characterization of ultrafast fluorescence from nanometric carbon particles,” J. Opt. A: Pure Appl. Opt. 8, S578–S584 (2006).
[CrossRef]

J. Phys. Chem. A (1)

J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, “Femtosecond dynamics of solvation: microscopic friction and coherent motion in dense fluids,” J. Phys. Chem. A 102, 4158–4171 (1998).
[CrossRef]

J. Phys. Radium (2)

F. Perrin, “Mouvement brownien d’un ellipsoïde: (I) Dispersion diélectrique pour des molécules ellipsoïdales,”J. Phys. Radium 5, 497–511 (1934).
[CrossRef]

F. Perrin, “Mouvement brownien d’un ellipsoïde: (II) Rotation libre et depolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales,” J. Phys. Radium 7, 1–11 (1936).
[CrossRef]

Mol. Phys. (1)

E. Kluk and J. G. Powles, “Friction model for the reorientation of linear molecules in fluids,” Mol. Phys. 301109–1116 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

A. Bruno, M. Alfè, B. Apicella, C. de Lisio, and P. Minutolo, “Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy,” Opt. Lasers Eng. 44, 732–737 (2006).
[CrossRef]

Photochem. Photobiol. Sci. (1)

T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, and J.-C. Mialocq, “Rotational diffusion of the 7-diethylamino-4-methylcoumarin C1 dye molecule in polar protic and aprotic solvents,” Photochem. Photobiol. Sci. 2, 329–341, (2003).
[CrossRef] [PubMed]

Rapid Commun. Mass. Spectrom. (1)

J. Happold, H.-H. Grotheer, and M. Aigner, “Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry,” Rapid Commun. Mass. Spectrom. 21, 1247–1253 (2005).
[CrossRef]

Synth. Met. (1)

D. Cecere, A. Bruno, P. Minutolo, and A. D’Alessio, “DLS measurements on nanoparticles produced in laminar premixed flames,” Synth. Met. 139, 653–656 (2003).
[CrossRef]

Other (9)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publisher, New York, U.S.2002).

P. Debye, Polar Molecules (Dover, New York, 1929).

A. D’Anna, A. D’Alessio, and P. Minutolo, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., (Springer-Verlag, Berlin, 1994).

P. Minutolo, G. Gambi, and A. D’Alessio, “Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit” in 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 1461–1469.

A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotation in Gases and Liquids (Cambridge University Press, Cambridge, U.K.,1994).
[CrossRef]

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

L. A. Sgro, A. De Filippo, G. Lanzuolo, and A. D’Alessio, “Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis,” in 31st International Symposium on Combustion (The Combustion Institute, Pittsburgh, 2007), pp. 631–638.

H. Bockhorn, ed., Soot Formation in Combustion: Mechanisms and Models, (Springer-Verlag, Berlin, 1994)
[CrossRef]

A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, “Precursor Formation and Soot Inception in Premixed Ethylene Flames,” in 24th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1992), pp. 973–980.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic view of the experimental apparatus: SHG: second harmonic crystal; HS: harmonic separator; CGF: colour glass filter; HWP: half-wave plate; GLP: Glan-laser polarizer; GTP: Glan-Thompson polarizer. (b) A photograph of Bunsen burner and propane flame.

Fig. 2.
Fig. 2.

Background-corrected LIF spectrum of fluorescent species located in the propane flame at 25 mm height above the burner rim.

Fig. 3.
Fig. 3.

Signal intensities relative to I (t) (black dots), I (t) (red triangles), and scattered laser radiation magnified by a factor of 100 (blue stars). Insert: Resulting anisotropy ratio (black dots).

Fig. 4.
Fig. 4.

Time behaviour of the early time anisotropy ratio (black squares). The red line is the corresponding Gaussian fit.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = I ( t ) I ( t ) I ( t ) + 2 I ( t ) ,
τ r = C η V k B T ,
τ f = 2 π M 3 k B T 120 ps
M d ω dt + ξ M ω = F ,
r ( t ) = r 0 exp [ 6 k B T M ( τ ω 2 e t τ ω + τ ω t τ ω 2 ) ] .
τ D = η V k B T ,
r ( t ) = r 0 exp [ 3 k B T M t 2 ] ,

Metrics