Abstract

An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  2. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-7-442.
    [CrossRef]
  3. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004).
    [CrossRef] [PubMed]
  4. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, "Comparative study of large-mode holey and conventional fibers," Opt. Lett. 26, 1045-1047 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-14-1045.
    [CrossRef]
  5. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2007), p. 27, p. 373.
  6. N. Mortensen and J. Folkenberg, "Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena," Opt. Express 10, 475-481 (2002).
    [PubMed]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-765.
    [CrossRef]
  8. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Y. N. Kondrat’ev, "Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber," Opt. Lett. 28, 1948-1950 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-20-1948.
    [CrossRef] [PubMed]
  9. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, "Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber," Opt. Lett. 29, 1545-1547 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-13-1545.
    [CrossRef] [PubMed]
  10. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
    [CrossRef]
  11. R. H. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
    [CrossRef]
  12. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1984).
    [CrossRef]
  13. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-19-1684.
    [CrossRef]
  14. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-10-2322.
    [CrossRef]
  15. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-10-2331.
    [CrossRef]
  16. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

2004 (2)

2003 (1)

2002 (5)

2001 (1)

2000 (1)

1984 (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1984).
[CrossRef]

1975 (1)

R. H. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
[CrossRef]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
[CrossRef]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1984).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett. (5)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2007), p. 27, p. 373.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup: M1, M2, mirrors; NDF, neutral density filter; AL, aspheric lens; Insert 1, cross section image of LMA-10 fiber.

Fig. 2.
Fig. 2.

Coupling efficiency (CE) of a 1.25-m LMA-10 fiber as a function of fiber length L measured from the running-coil experiment (red line) and the shortening-length experiment (blue line); the green line indicates CE vs. L relation of a straight or randomly oriented LMA-10 fiber coiled at the fiber entrance; (a) 70 mW incident amplifier power; (b) 20 mW incident amplifier power.

Fig. 3.
Fig. 3.

(a). Spectrum of the incident amplifier pulses (green line); spectra of the leaky mode at L=1.20 m (red line) and L=0.12 m (blue line) at 70 mW incident amplifier power; (b) spectrum of the incident amplifier pulses (green line); spectra of the leaky mode at L=1.20 m (red line) and L=0.12 m (blue line) at 20 mW incident amplifier power; (c) spectra of the core mode at L=1.20 m (red line) and L=0.12 m (blue line) at 70 mW incident amplifier power; (d) spectra of the core mode at L=1.20 m (red line) and L=0.12 m (blue line) at 20 mW incident amplifier power.

Metrics