Abstract

Using a multi section laser in coupled cavity injection grating design based on 1.3 µm InGaAs/GaAs quantum dot (QD) active region we were able to enhance the 3 dB modulation bandwidth well beyond the inherent material modulation bandwidth. The material bandwidth was determined by measurements on distributed feedback (DFB) devices to approximately 8 GHz. The special multisectional design allows interaction between the lasing mode and a second mode used as catalyst and enables a high resonance frequency of the device. Based on active QD material this approach allowed us to reach a cut off frequency of 20 GHz in the small signal response of the device.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Su and L. F. Lester, "Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp," J. Phys. D: Appl. Phys. 38, 2112-2118 (2005).
    [CrossRef]
  2. J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, "Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots," Appl. Phys. Lett. 80, 2162-2164 (2002).
    [CrossRef]
  3. D. R. Matthews, H. D. Summers, P. M. Smowtown, and M. Hopkinson, "Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers," Appl. Phys. Lett. 81, 4904-4906 (2002).
    [CrossRef]
  4. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs-1 directly modulated lasers and 40 Gbs-1 signal-regenerative amplifiers," J. Phys. D: Appl. Phys. 38, 2126-2134 (2005).
    [CrossRef]
  5. B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, O. Bertran-Pardo, O. Le Gouezigou, and D. Make, "Uncooled isolator-free directly modulated quantum dot laser 10 Gb/s transmission at 1.3 µm with constant operation parameters," European Conference on Optical Communication, Th4.5.7. (2006).
  6. S. Fathpour, Z. Mi, and P. Bhattacharya, "High-speed quantum dot lasers," J. Appl. Phys. 38, 2103 (2005).
  7. F. Gerschütz, M. Fischer, J. Koeth, M. Chacinski, R. Schatz, O. Kjebon, A. Kovsh, A. Krestnikov, and A. Forchel, "Temperature insensitive 1.3 µm InGaAs/GaAs quantum dot distributed feedback lasers for 10 Gbit/s transmission over 21 km," Electron. Lett. 42, 1457-1458 (2006).
    [CrossRef]
  8. G. Morthier, R. Schatz, and O. Kjebon "Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization," IEEE J. Quantum Electron. 36, 1468-1475 (2000).
    [CrossRef]
  9. U. Feiste, "Optimization of modulation bandwidth of DBR lasers with detuned Bragg reflectors," IEEE J. Quantum Electron. 34, 2371-2379 (1998).
    [CrossRef]
  10. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 µm," Electron. Lett. 33, 488-489 (1997).
    [CrossRef]
  11. L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, T. W. Berg, and B. Tromborg, "Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design," Electron. Lett. 39, 1592-1593 (2003).
    [CrossRef]
  12. W. Kaiser, L. Bach, J. P. Reithmaier, and A. Forchel, "High speed coupled cavity injection grating lasers with tailored modulation transfer function," IEEE Photon. Technol. Lett. 16, 1997 (2004).
    [CrossRef]
  13. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback," IEEE J. Sel. Top. Quantum Electron. 13, 136-142 (2007).
    [CrossRef]

2007 (1)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback," IEEE J. Sel. Top. Quantum Electron. 13, 136-142 (2007).
[CrossRef]

2006 (1)

F. Gerschütz, M. Fischer, J. Koeth, M. Chacinski, R. Schatz, O. Kjebon, A. Kovsh, A. Krestnikov, and A. Forchel, "Temperature insensitive 1.3 µm InGaAs/GaAs quantum dot distributed feedback lasers for 10 Gbit/s transmission over 21 km," Electron. Lett. 42, 1457-1458 (2006).
[CrossRef]

2005 (3)

H. Su and L. F. Lester, "Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp," J. Phys. D: Appl. Phys. 38, 2112-2118 (2005).
[CrossRef]

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs-1 directly modulated lasers and 40 Gbs-1 signal-regenerative amplifiers," J. Phys. D: Appl. Phys. 38, 2126-2134 (2005).
[CrossRef]

S. Fathpour, Z. Mi, and P. Bhattacharya, "High-speed quantum dot lasers," J. Appl. Phys. 38, 2103 (2005).

2004 (1)

W. Kaiser, L. Bach, J. P. Reithmaier, and A. Forchel, "High speed coupled cavity injection grating lasers with tailored modulation transfer function," IEEE Photon. Technol. Lett. 16, 1997 (2004).
[CrossRef]

2003 (1)

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, T. W. Berg, and B. Tromborg, "Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design," Electron. Lett. 39, 1592-1593 (2003).
[CrossRef]

2002 (2)

J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, "Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots," Appl. Phys. Lett. 80, 2162-2164 (2002).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowtown, and M. Hopkinson, "Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers," Appl. Phys. Lett. 81, 4904-4906 (2002).
[CrossRef]

2000 (1)

G. Morthier, R. Schatz, and O. Kjebon "Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization," IEEE J. Quantum Electron. 36, 1468-1475 (2000).
[CrossRef]

1998 (1)

U. Feiste, "Optimization of modulation bandwidth of DBR lasers with detuned Bragg reflectors," IEEE J. Quantum Electron. 34, 2371-2379 (1998).
[CrossRef]

1997 (1)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 µm," Electron. Lett. 33, 488-489 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, "Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots," Appl. Phys. Lett. 80, 2162-2164 (2002).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowtown, and M. Hopkinson, "Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers," Appl. Phys. Lett. 81, 4904-4906 (2002).
[CrossRef]

Electron. Lett. (3)

F. Gerschütz, M. Fischer, J. Koeth, M. Chacinski, R. Schatz, O. Kjebon, A. Kovsh, A. Krestnikov, and A. Forchel, "Temperature insensitive 1.3 µm InGaAs/GaAs quantum dot distributed feedback lasers for 10 Gbit/s transmission over 21 km," Electron. Lett. 42, 1457-1458 (2006).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 µm," Electron. Lett. 33, 488-489 (1997).
[CrossRef]

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, T. W. Berg, and B. Tromborg, "Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design," Electron. Lett. 39, 1592-1593 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Morthier, R. Schatz, and O. Kjebon "Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization," IEEE J. Quantum Electron. 36, 1468-1475 (2000).
[CrossRef]

U. Feiste, "Optimization of modulation bandwidth of DBR lasers with detuned Bragg reflectors," IEEE J. Quantum Electron. 34, 2371-2379 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback," IEEE J. Sel. Top. Quantum Electron. 13, 136-142 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Kaiser, L. Bach, J. P. Reithmaier, and A. Forchel, "High speed coupled cavity injection grating lasers with tailored modulation transfer function," IEEE Photon. Technol. Lett. 16, 1997 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. Fathpour, Z. Mi, and P. Bhattacharya, "High-speed quantum dot lasers," J. Appl. Phys. 38, 2103 (2005).

J. Phys. D: Appl. Phys. (2)

H. Su and L. F. Lester, "Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp," J. Phys. D: Appl. Phys. 38, 2112-2118 (2005).
[CrossRef]

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs-1 directly modulated lasers and 40 Gbs-1 signal-regenerative amplifiers," J. Phys. D: Appl. Phys. 38, 2126-2134 (2005).
[CrossRef]

Other (1)

B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, O. Bertran-Pardo, O. Le Gouezigou, and D. Make, "Uncooled isolator-free directly modulated quantum dot laser 10 Gb/s transmission at 1.3 µm with constant operation parameters," European Conference on Optical Communication, Th4.5.7. (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of a CCIG laser design with the three electrically separated sections.

Fig. 2.
Fig. 2.

Emission spectrum of the CCIG device under cw operation and at 25°C. The injected currents are: 38 mA (gain) – 175 mA (grating) – 170 mA (phase). Single mode emission at a wavelength of 1302.6 nm with SMSR of ~50 dB is observed.

Fig. 3.
Fig. 3.

Output power of the front facet f a QD CCIG device as a function of grating current and phase current under cw operation at 25°C. The gain current is kept constant at 50 mA for this measurement.

Fig. 4.
Fig. 4.

(a) Small signal response of a QD CCIG device for various grating currents at 25°C. The currents of the phase and gain section are kept constant during the measurement whereas the grating current is varied.

Fig. 4.
Fig. 4.

(b) Small signal response of a QD CCIG device for various phase currents at 25°C. The currents in the grating and gain section are kept constant during the measurement.

Metrics