Abstract

A 58 MHz femtosecond Ti:sapphire oscillator is optimized for long wavelength operation beyond 900 nm. Sub 30 fs, ~3 nJ pulses with a bandwidth exceeding 20 THz are realized for central wavelengths 900 nm≤λ≤960 nm. This laser opens up new perspectives for the sensitive timeresolved spectroscopy of various semiconductor nanostructures. Moreover, its second harmonic serves as a source of visible multi-milliwatt femtosecond pulses tunable around 475 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Spielmann,  et al., "Ultrabroad-band femtosecond lasers," IEEE J. Quantum. Electron. 30, 1100-1114 (1994).
    [CrossRef]
  2. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  3. R. Ell,  et al., "Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  4. S. Raymond,  et al., "Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots," Phys. Rev. Lett. 92, 187402 (2004).
    [CrossRef] [PubMed]
  5. A. Badolato,  et al., "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
    [CrossRef] [PubMed]
  6. J. Piel, M. Beutter, and E. Riedle, "20-50 fs pulses tunable across the near-infrared from a blue-pumped noncollinear parametric amplifier," Opt. Lett. 25, 180-182 (2000).
    [CrossRef]
  7. D. E. Spence, P. N. Kean, and W. Sibbett, "60 fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  8. E. Riedle,  et al., "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
    [CrossRef]
  9. C. Manzoni, D. Polli, and G. Cerullo, "Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution," Rev. Sci. Inst. 77, 023103 (2006).
    [CrossRef]
  10. B. E. Lemoff and C. P. J. Party, "Cubic-phase-free dispersion compensation in solid-state ultrashort-pulse lasers," Opt. Lett. 18, 57-59 (1993).
    [CrossRef] [PubMed]
  11. K. Moutzouris,  et al., "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
    [CrossRef] [PubMed]
  12. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, "Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible," Opt. Lett. 23, 1283-1285 (1998).
    [CrossRef]

2006 (2)

C. Manzoni, D. Polli, and G. Cerullo, "Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution," Rev. Sci. Inst. 77, 023103 (2006).
[CrossRef]

K. Moutzouris,  et al., "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Badolato,  et al., "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Raymond,  et al., "Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots," Phys. Rev. Lett. 92, 187402 (2004).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

J. Piel, M. Beutter, and E. Riedle, "20-50 fs pulses tunable across the near-infrared from a blue-pumped noncollinear parametric amplifier," Opt. Lett. 25, 180-182 (2000).
[CrossRef]

E. Riedle,  et al., "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

1998 (1)

1994 (1)

C. Spielmann,  et al., "Ultrabroad-band femtosecond lasers," IEEE J. Quantum. Electron. 30, 1100-1114 (1994).
[CrossRef]

1993 (1)

1991 (1)

1986 (1)

Appl. Phys. B (1)

E. Riedle,  et al., "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

IEEE J. Quantum. Electron. (1)

C. Spielmann,  et al., "Ultrabroad-band femtosecond lasers," IEEE J. Quantum. Electron. 30, 1100-1114 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

S. Raymond,  et al., "Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots," Phys. Rev. Lett. 92, 187402 (2004).
[CrossRef] [PubMed]

Rev. Sci. Inst. (1)

C. Manzoni, D. Polli, and G. Cerullo, "Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution," Rev. Sci. Inst. 77, 023103 (2006).
[CrossRef]

Science (1)

A. Badolato,  et al., "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Resonator design of the long wavelength femtosecond Ti:sapphire laser. The mirrors used are described in the main text. (b) Optical output spectrum for a central frequency of 904 nm. (c) Intensity autocorrelation of the pulse with sech2-fit. (d) Corresponding interferometric autocorrelation trace with sech2-fit to the envelope.

Fig. 2.
Fig. 2.

(a). Optical spectrum for a central wavelength of 940 nm obtained with a 6 % output coupler. (b) Intensity autocorrelation of the pulse with sech2-fit. (c) Corresponding interferometric autocorrelation trace with sech2-fit to the envelope.

Fig. 3.
Fig. 3.

(a). Shortest pulse durations obtained for various central wavelengths. The durations represent FWHM values of sech2-fits to the envelope of interferometric autocorrelation traces. All values are obtained with 6 % output couplers. (b), (c) Corresponding average output powers and FWHM values of the optical bandwidth. (d) Calculated second order roundtrip dispersion of the gain medium (orange line), the fused silica prism compressor (blue) and the entire resonator (green).

Fig. 4.
Fig. 4.

(a). Optical spectrum of the second harmonic pulse generated in a 0.5 mm thick BBO crystal. The fundamental pulse of 31 fs duration is centered at 946 nm. (b) Interferometric autocorrelation trace of the second harmonic pulse with a sech2-fit to the envelope.

Metrics