Abstract

The mode-selection method based on a single-mode microstructured optical fiber (MOF) in the multicore fiber (MCF) lasers is presented. With an appropriate choice of the designed parameters of the MOF, the power coupling coefficient between the fundamental mode (FM) of the MOF and the in-phase mode can be much higher than those between the FM and the other supermodes. As a result, the in-phase mode has the highest power reflection on the right-hand side of the MCF laser cavity, and dominates the output laser power. Compared to the MCF lasers based on the free-space Talbot cavity method, the MCF lasers with the MOF as a mode-selection component have higher effectiveness of the in-phase mode selection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array," IEEE Photon. Technol. Lett. 13, 439-441 (2001).
    [CrossRef]
  2. Y. Huo, P. K. Cheo, and G. G. King, "Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier," Opt. Express 12, 6230-6239 (2004).
    [CrossRef] [PubMed]
  3. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, "Mode competition in multi-core fiber amplifier," Opt. Commun. 277, 390-396 (2007).
    [CrossRef]
  4. Y. Huo and P. K. Cheo, "Analysis of transverse mode competition and selection in multicore fiber lasers," J. Opt. Soc. Am. B 22, 2345-2349 (2005).
    [CrossRef]
  5. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, "Phase locking in a multicore fiber laser by means of a Talbot resonator," Opt. Lett. 25, 1436-1438 (2000).
    [CrossRef]
  6. M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Opt. Lett. 26, 980-982 (2001).
    [CrossRef]
  7. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase locking and in-phase supermode selection in monolithic multicore fiber lasers," Opt. Lett. 31, 2577-2579 (2006).
    [CrossRef] [PubMed]
  8. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase-locked multicore all-fiber lasers: modeling and experimental investigation," J. Opt. Soc. Am. B 24, 1721-1728 (2007).
    [CrossRef]
  9. COMSOL Multiphysics™, http://www.comsol.com.
  10. J. C. Knight, T. A. Birks, P. St, J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  11. T. A. Birks, J. C. Knight, and P. StJ. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  12. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1346-1347 (1998).
    [CrossRef]
  13. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, "Comparative study of large-mode holey and conventional fibers," Opt. Lett. 26, 1045-1047 (2001).
    [CrossRef]
  14. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
    [PubMed]
  15. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001).
    [CrossRef]

2007 (2)

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, "Mode competition in multi-core fiber amplifier," Opt. Commun. 277, 390-396 (2007).
[CrossRef]

L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Phase-locked multicore all-fiber lasers: modeling and experimental investigation," J. Opt. Soc. Am. B 24, 1721-1728 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

2002 (1)

2001 (4)

2000 (1)

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1346-1347 (1998).
[CrossRef]

1997 (1)

1996 (1)

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1346-1347 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array," IEEE Photon. Technol. Lett. 13, 439-441 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, "Mode competition in multi-core fiber amplifier," Opt. Commun. 277, 390-396 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Other (1)

COMSOL Multiphysics™, http://www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Configurations of the MCF lasers based on the two kinds of mode-selection mechanisms. (a) Mode-selection mechanism is based on a free-space Talbot cavity, where the distance between the fiber end and the mirror is Zd/2. (b) Mode-selection mechanism is based on the MOF, where the MOF with a butt-contact dichroic mirror at the right-hand end is spliced to the active MCF. The pump beam with wavelength of 976 nm is coupled into the left-hand end of the MCF via a dichroic mirror, which reflects the laser beam with wavelength of 1.08 µm..

Fig. 2.
Fig. 2.

Configurations of the cores in the 37-core fiber.

Fig. 3.
Fig. 3.

The intensity profiles of some supermodes of the 19-core fiber.

Fig. 4.
Fig. 4.

The intensity profiles of some supermodes of the 37-core fiber.

Fig. 5.
Fig. 5.

Configurations of the MOF.

Fig. 6.
Fig. 6.

The dependencies of the power coupling coefficients of the in-phase mode to the FM of the MOF on d 1/Λ for the 19-core (a) and 37-core fibers (b) at wavelength of 1.08 µm..

Fig. 7.
Fig. 7.

The intensity profiles of modes of the MOFs with d 1=d 2=12 µm and Λ=31 µm (a), and with d 1=d 2=12.4 µm and Λ=38 µm (b) at wavelength of 1.08 µm.

Fig. 8.
Fig. 8.

The dependencies of the confinement losses of the FM (a)(c) and cladding modes (b)(d) on d 2.

Fig. 9.
Fig. 9.

The intensity profiles of modes of the MOFs with d 1=12 µm, d 2=10 µm, and Λ=31 µm (a), and with d 1=12.4 µm, d 2=10 µm, and Λ=38 µm (b) at wavelength of 1.08 µm.

Fig. 10.
Fig. 10.

The output power of the in-phase mode Ps19 out and the factor Q versus L MOF for the MOFs with d 1=d 2=12 µm and Λ=31 µm (a), and wth d 1=12 µm, d 2=10 µm, and Λ=31 µm (b) for the 19-core fiber lasers with pump power of 400 W.

Fig. 11.
Fig. 11.

The output power of the in-phase mode Ps37 out and the factor Q versus L MOF for the MOFs with d 1=d 2=12.4 µm and Λ=38 µm (a), and with d 1=12.4 µm, d 2=10 µm, and Λ=38 µm (b) for the 37-core fiber lasers with pump power of 600 W.

Fig. 12.
Fig. 12.

The output laser powers of the supermodes versus Zd for (a) a 19-core and (b) a 37-core fiber for the free-space Talbot cavity.

Tables (1)

Tables Icon

Table 1 The parameters used in simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η i FM = A i * ( x , y ) A FM ( x , y ) 2
{ P si ( L MCF ) } = Ω = FM D 2 { η i Ω } T · { P si + ( L MCF ) } · α Ω · { η i Ω }
α Ω = exp [ 4 Im ( β Ω ) L MOF ]
Q = P sm out i = 1 m P si out

Metrics