Abstract

We report polarization independent wavelength conversion based on one-pump fiber optical parametric amplifiers. A spectrum-sliced amplified spontaneous emission (ASE) light source is used to provide a non-polarized pump. The signal is coherent lights coming from a tunable laser. When adjusting the polarization of the signal using a polarization controller, the variation of wavelength conversion efficiency is less than 0.2 dB. We use the vector theory of four-wave mixing to analyze the polarization independent nature of wavelength conversion by using randomly polarized pumps.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. Qasaimeh, "Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers," IEEE Photon.Technol. Lett. 16, 542-544 (2004).
    [CrossRef]
  2. H. Tsuchida, T. Simoyama, H. Ishikawa, T. Mozume, M. Nagase, and J. Kasai, "Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs/AlAs/AlAsSb coupled quantum wells," Opt. Lett. 32, 751-753 (2007).
    [CrossRef] [PubMed]
  3. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, "Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber," IEEE Photon.Technol. Lett. 17, 1908-1910 (2005).
    [CrossRef]
  4. M. Matsuura, N. Kishi, and T. Miki, "Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters," J. Lightwave Technol. 25, 38-45 (2007).
    [CrossRef]
  5. S. M, Gao, C. X. Yang, and G. F. Jin, "Conventional-band and long-wavelength-band efficient wavelength conversion by difference-frequency generation in sinusoidally chirped optical superlattice waveguides," Opt. Commun. 239, 333-338 (2004).
    [CrossRef]
  6. Q1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," J. Sel. Topics Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  7. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-Independent One-Pump Fiber-Optical Parametric Amplifier," IEEE Photon.Technol. Lett. 14, 1506-1508 (2002).
    [CrossRef]
  8. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-Independent Two-Pump Fiber-Optical Parametric Amplifier," IEEE Photon.Technol. Lett. 14, 911-913 (2002).
    [CrossRef]
  9. Q. Lin and G. P. Agrawal, "Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers," J. Opt. Soc. Am. B 21, 1216-1224 (2004).
    [CrossRef]
  10. S. M. Gao, C. X. Yang, X. S. Xiao, Y. Tian, Z. You, and G. F. Jin, "Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers," Opt. Express 14, 2873-2879 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2873.
    [CrossRef] [PubMed]
  11. Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10, 218-220 (1998).
    [CrossRef]

2007 (2)

2006 (1)

2005 (1)

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, "Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber," IEEE Photon.Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

2004 (3)

O. Qasaimeh, "Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers," IEEE Photon.Technol. Lett. 16, 542-544 (2004).
[CrossRef]

Q. Lin and G. P. Agrawal, "Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers," J. Opt. Soc. Am. B 21, 1216-1224 (2004).
[CrossRef]

S. M, Gao, C. X. Yang, and G. F. Jin, "Conventional-band and long-wavelength-band efficient wavelength conversion by difference-frequency generation in sinusoidally chirped optical superlattice waveguides," Opt. Commun. 239, 333-338 (2004).
[CrossRef]

2002 (3)

Q1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," J. Sel. Topics Quantum Electron. 8, 506-520 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-Independent One-Pump Fiber-Optical Parametric Amplifier," IEEE Photon.Technol. Lett. 14, 1506-1508 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-Independent Two-Pump Fiber-Optical Parametric Amplifier," IEEE Photon.Technol. Lett. 14, 911-913 (2002).
[CrossRef]

1998 (1)

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10, 218-220 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10, 218-220 (1998).
[CrossRef]

IEEE Photon.Technol. Lett. (4)

O. Qasaimeh, "Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers," IEEE Photon.Technol. Lett. 16, 542-544 (2004).
[CrossRef]

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, "Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber," IEEE Photon.Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-Independent One-Pump Fiber-Optical Parametric Amplifier," IEEE Photon.Technol. Lett. 14, 1506-1508 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-Independent Two-Pump Fiber-Optical Parametric Amplifier," IEEE Photon.Technol. Lett. 14, 911-913 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Sel. Topics Quantum Electron. (1)

Q1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," J. Sel. Topics Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Opt. Commun. (1)

S. M, Gao, C. X. Yang, and G. F. Jin, "Conventional-band and long-wavelength-band efficient wavelength conversion by difference-frequency generation in sinusoidally chirped optical superlattice waveguides," Opt. Commun. 239, 333-338 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experiment setup. AWG: Array wave grating. PC: Polarization controller. OSA: Optical spectrum analyzer.

Fig. 2.
Fig. 2.

The measured maximal and minimal wavelength conversion efficiency at each wavelength when changing the SOP of signal randomly.

Fig. 3.
Fig. 3.

Conversion efficiency versus pump power. The signal wavelength is 1553nm.

Fig. 4.
Fig. 4.

Comparison of conversion under ASE pump and laser pump with the same pump power and wavelength. Inset: Two typical wavelength conversion spectrums with laser pump and ASE pump. The pumps and signals have the same wavelength and power respectively.

Fig. 5.
Fig. 5.

Theoretical results for polarization sensitivity of FOPA with one non-polarized pump: (a) conversion efficiency fluctuations for 50 different signal SOPs; (b) The SOPs of the signal randomly selected.

Fig. 6.
Fig. 6.

Simulation results both for laser pump and ASE pump together with the corresponding experiment results.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d A px d z = i β p A px + i γ ( 2 A p 2 A px + A px 2 A px + A px * A py 2 ) 3
d A py d z = i β p A py + i γ ( 2 A p 2 A py + A py 2 A py + A py * A px 2 ) 3
d A sx d z = i β s A sx + i γ [ 2 A p 2 A sx + 2 ( A px 2 A sx + A px A py * A sy ) + 2 ( A px 2 A sx + A px * A py A sy ) ] 3
+ i γ [ 2 ( A ix * A px + A iy * A py ) A px + ( A px 2 + A py 2 ) A ix * ] 3
d A sy d z = i β s A sy + i γ [ 2 A p 2 A sy + 2 ( A py 2 A sy + A py A px * A sx ) + 2 ( A py 2 A sy + A py * A px A sx ) ] 3
+ i γ [ 2 ( A ix * A px + A iy * A py ) A py + ( A px 2 + A py 2 ) A iy * ] 3
d A ix d z = i β i A ix + i γ [ 2 A p 2 A ix + 2 ( A px 2 A ix + A px A py * A iy ) + 2 ( A px 2 A ix + A px * A py A iy ) ] 3
+ i γ [ 2 ( A sx * A px + A sy * A py ) A px + ( A px 2 + A py 2 ) A sx * ] 3
d A iy d z = i β i A iy + i γ [ 2 A p 2 A iy + 2 ( A py 2 A iy + A py A px * A ix ) + 2 ( A py 2 A iy + A py * A px A ix ) ] 3
+ i γ [ 2 ( A ix * A px + A iy * A py ) A iy + ( A px 2 + A py 2 ) A sy * ] 3

Metrics