Abstract

Laser writing of longitudinal waveguides in bulk transparent materials degrades with the focusing depth due to wavefront distortions generated at the air-dielectric interface. Using adaptive spatial tailoring of ultrashort laser pulses, we show that spherical aberrations can be dynamically compensated in optical glasses, in synchronization with the writing procedure. Aberration-free structures can thus be induced at different depths, showing higher flexibility for 3D processing. This enables optimal writing of homogeneous longitudinal waveguides over more significant lengths. The corrective process becomes increasingly important when laser energy has to be transported without losses at arbitrary depths, with the purpose of triggering mechanisms of positive refractive index change.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  3. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 76, 725-727 (2001).
    [CrossRef]
  4. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101/1-4 (2006).
    [CrossRef] [PubMed]
  5. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
    [CrossRef]
  6. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Commun. 171, 279-284 (1999).
    [CrossRef]
  7. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, "Form birefringence and negative index change created by femtosecond direct writing in transparent materials," Opt. Lett. 29, 119-121 (2004).
    [CrossRef] [PubMed]
  8. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii "Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses," Opt. Lett. 28, 2491-2493 (2003).
    [CrossRef] [PubMed]
  9. A. Szameit, D. Bl¨omer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. T¨unnermann, and F. Lederer "Discrete nonlinear localization in femtosecond laser written waveguides in fused silica," Opt. Express 13, 10552-10557 (2005).
    [CrossRef] [PubMed]
  10. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta "1.5 m single longitudinal mode waveguide laser fabricated by femtosecond laser writing," Opt. Express 15, 3190-3194 (2007).
    [CrossRef] [PubMed]
  11. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman "Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses," Opt. Express 15, 4182-4191 (2007).
    [CrossRef] [PubMed]
  12. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, "Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass," Opt. Express 15, 12395-12408 (2007).
    [CrossRef] [PubMed]
  13. M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refractive-indexmismatched media," J. Microsc. 192, 90-98 (1998).
    [CrossRef]
  14. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517/1-5 (2005).
    [CrossRef]
  15. A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A 76, 257-260 (2003).
    [CrossRef]
  16. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, "Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica," Pure and Appl. Opt. 7, 655-659 (2005).
    [CrossRef]
  17. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, "Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing," Appl. Phys. A 84, 257-260 (2006).
    [CrossRef]
  18. V. Diez-Blanco, J. Siegel, and J. Solis, "Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold," Appl. Surf. Sci. 252, 4523-4526 (2006).
    [CrossRef]
  19. K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  20. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  21. M. Kamata and M. Obara, "Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser," Appl. Phys. A 78, 85-88 (2004).
    [CrossRef]
  22. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, "Predictive aberration correction for multilayer optical data storage," Appl. Phys. Lett. 88, 031109/1-3 (2006).
    [CrossRef]
  23. J. Hahn, H. Kim, K. Choi, and B. Lee, "Real-time digital holographic beam-shaping system with a genetic feedback tuning loop," Appl. Opt. 45, 915-924 (2006).
    [CrossRef] [PubMed]
  24. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, "Femtosecond laser-induced refractive index modification in multicomponent glasses," J. Appl. Phys. 97, 083102/1-9 (2005).
    [CrossRef]
  25. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, "Programmable focal spot shaping of amplified femtosecond laser pulses," Opt. Lett. 30, 1479-1481 (2005).
    [CrossRef] [PubMed]
  26. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  27. R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1998).
    [CrossRef]
  28. A. Bartelt, "Control of wave packet dynamics in small alkali clusters with optimally shaped femtosecond pulses," Ph.D. Thesis Freie Universitat Berlin (2002).
  29. A. Mermillod-Blondin, "Analysis and optimization of ultrafast laser-induced bulk modifications in dielectric materials," Ph.D. Thesis Freie Universitat Berlin (2007).
  30. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, "Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation," Phys. Rev. B 76, 024101/1-12 (2007).
    [CrossRef]
  31. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Express 15, 5674-5686 (2007).
    [CrossRef] [PubMed]

2007 (4)

2006 (4)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, "Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing," Appl. Phys. A 84, 257-260 (2006).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, "Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold," Appl. Surf. Sci. 252, 4523-4526 (2006).
[CrossRef]

J. Hahn, H. Kim, K. Choi, and B. Lee, "Real-time digital holographic beam-shaping system with a genetic feedback tuning loop," Appl. Opt. 45, 915-924 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, "Form birefringence and negative index change created by femtosecond direct writing in transparent materials," Opt. Lett. 29, 119-121 (2004).
[CrossRef] [PubMed]

M. Kamata and M. Obara, "Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser," Appl. Phys. A 78, 85-88 (2004).
[CrossRef]

2003 (2)

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A 76, 257-260 (2003).
[CrossRef]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii "Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses," Opt. Lett. 28, 2491-2493 (2003).
[CrossRef] [PubMed]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 76, 725-727 (2001).
[CrossRef]

2000 (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1999 (2)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Commun. 171, 279-284 (1999).
[CrossRef]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

1998 (2)

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refractive-indexmismatched media," J. Microsc. 192, 90-98 (1998).
[CrossRef]

R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1998).
[CrossRef]

1997 (1)

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

1996 (2)

Appl. Opt. (1)

Appl. Phys. A (3)

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A 76, 257-260 (2003).
[CrossRef]

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, "Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing," Appl. Phys. A 84, 257-260 (2006).
[CrossRef]

M. Kamata and M. Obara, "Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser," Appl. Phys. A 78, 85-88 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 76, 725-727 (2001).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

V. Diez-Blanco, J. Siegel, and J. Solis, "Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold," Appl. Surf. Sci. 252, 4523-4526 (2006).
[CrossRef]

J. Micros. (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refractive-indexmismatched media," J. Microsc. 192, 90-98 (1998).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Commun. 171, 279-284 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1998).
[CrossRef]

Pure and Appl. Opt. (1)

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, "Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica," Pure and Appl. Opt. 7, 655-659 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other (7)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517/1-5 (2005).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101/1-4 (2006).
[CrossRef] [PubMed]

A. Bartelt, "Control of wave packet dynamics in small alkali clusters with optimally shaped femtosecond pulses," Ph.D. Thesis Freie Universitat Berlin (2002).

A. Mermillod-Blondin, "Analysis and optimization of ultrafast laser-induced bulk modifications in dielectric materials," Ph.D. Thesis Freie Universitat Berlin (2007).

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, "Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation," Phys. Rev. B 76, 024101/1-12 (2007).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, "Femtosecond laser-induced refractive index modification in multicomponent glasses," J. Appl. Phys. 97, 083102/1-9 (2005).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, "Predictive aberration correction for multilayer optical data storage," Appl. Phys. Lett. 88, 031109/1-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of the longitudinal photowriting procedure and the appearance of wavefront distortions upon focusing [14]. Insert: Description of spherical aberration due to refraction at air-dielectric interfaces and the subsequent elongation of the focal area. The longitudinal aberration depends on the index contrast between the two media and increases with the focusing depth.

Fig. 2.
Fig. 2.

The feedback loop diagram. (a) Schematic representation of the optimization procedure, emphasizing the main steps of the self-improvement approach; evaluation of the phase masks and generation of new solutions. The strategy involves applying, comparing, and testing each phase mask according to its ability to correct spherical aberration. This has the purpose to select the most fitted patterns for a new generation of an improved phase pattern family. (b) Blow-up of the phase-pattern evaluation sub-steps: irradiation of the sample with the phase mask to be tested, estimation of the corresponding trace length, ranking of the phase mask.

Fig. 3.
Fig. 3.

Static (left, (a,b)) and dynamic, longitudinally written (right, (c,d)) material modifications induced in BK7 by ultrafast laser radiation at different input powers. The static irradiation corresponds to 105 pulses/site while the dynamic structures are made at a scanning speed of 1 µm/s. Laser pulses are incident from the left and scanned towards the laser source. The structures are localized at 200 µm depth with respect to the air-dielectric interface. Waveguide writing conditions are achieved only at high powers (see text for details). (e) Axial cross-section through the laser written structures in conditions (a) and (b). The axial cross-sections correspond to the relative change in the refractive index.

Fig. 4.
Fig. 4.

Evolution of the trace fitness during the optimization run at the depth of 2500 µm. Example of traces and corresponding gray-level phase masks at different moments of optimization are given as well.

Fig. 5.
Fig. 5.

(a) Non-corrected (left) and spatially-corrected (right) static structures induced at different depths with respect to the sample surface. The working depth was defined in Fig. 1 as the position of the paraxial focus. The structures are induced by 105 pulses of 150 fs duration at 100 kHz and 125mW average power. (b) Axial cross-sections through some laser written structures. Note the discrepancies in the spatial scales in (a) and (b).

Fig. 6.
Fig. 6.

Comparison between the effect of theoretical and optimized correction masks for 125mW input power. Static laser structures induced at 2000 µm depth without correction (1), with theoretical correction (2), with adaptive correction (3).

Fig. 7.
Fig. 7.

Longitudinal structures at different working depths in corrected (top) and non-corrected (bottom) cases. The corrections enable a positive refractive index change over a distance of 3 mm. Scanning speed is 1 µm/s at 125mW average power. Right, far-field pattern of the guided mode at 632 nm for the corrected guide.

Metrics