Abstract

A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Weitkamp (Ed.), Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  2. D. Stothard, M. Dunn, and C. Rae, "Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator," Opt. Express 12, 947-955 (2004).
    [CrossRef] [PubMed]
  3. V. W. S. Chan, "Free-space optical communications," J. Lightwave Technol. 24, 4750-4762 (2006).
    [CrossRef]
  4. C. Langrock and M. M. Fejer, "Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides," Opt. Lett. 32, 2263-2265 (2007).
    [CrossRef] [PubMed]
  5. K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L.G. Kazovsky, "Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain," presented at the Conference on Lasers & Electro-Optics, Baltimore, Md., 1-6 June 2003.
  6. T. Torounidis and P.A. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
    [CrossRef]
  7. J.M. Chavez Boggio, M. Knutzen, C. Bres, N. Alic, J.R. Windmiller, B. Stossel, K. Rottwitt, S. Radic, "All fiber parametric conversion from near to short wave infrared band," presented at the European Conference on Optical Communications, PD, Berlin, Germany 16-20 September 2007.
  8. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J.E. Ford, Y. Fainman, S. Radic, "Parametric wavelength conversion from conventional near-infrared to visible band," IEEE Photon. Technol. Lett. 18, 2445-2447 (2006).
    [CrossRef]
  9. R. Jiang, N. Alic, C. J. McKinstrie, S. Radic, "Two Pump Parametric Amplifier with 40dB of Equalized Continuous Gain over 50nms," presented at Optical Fiber Communication Conference, (OFC/NFOEC 2007), Anaheim, March 2007.
    [CrossRef]
  10. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, "Spectrally flat and broadband double-pumped fiber optical parametric amplifiers," Opt. Express 15, 5288-5309 (2007)
    [CrossRef]
  11. J.M. Chavez Boggio and H.L. Fragnito, "Simple four-wave mixing based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers," J. Opt. Soc. Am. B 24, 2046-2054 (2007).
    [CrossRef]
  12. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  13. E. A. Golovchenko, P. V.  Mamyshev, A. N.  Pilipetskii,and E. M. Dianov, "Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 26, 1815-1820 (1990).
    [CrossRef]
  14. F. Vanholsbeeck, P. Emplit, and S. Coen, " Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain," Opt. Lett. 28, 1960-1962 (2003).
    [CrossRef] [PubMed]
  15. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Express 15, 8104-8114 (2007).
    [CrossRef] [PubMed]
  16. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1167 (1989).
    [CrossRef]
  17. The complex part of the Raman third order nonlinear susceptibility was obtained from available data in the commercial VPI software, while the real part was obtained using Kramers-Kronig relations.
  18. A.V. Shakhanov, K. M. Golant, A. N. Perov, S. D. Rumyantsev, A. G. Shebunyaev, I. I. Cheremisin, and S. A. Popov, "All-silica optical fibers with reduced losses beyond two microns," Proc. SPIE 1893, 85-89 (1993).
    [CrossRef]
  19. J. D. Shephard, W. N. MacPherson, R. R. J. Maier, J. D. C. Jones and D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts and J. C. Knight, "Single-mode mid-IR guidance in a hollow-core photonic crystal fiber," Opt. Express 13, 7139-7144 (2005).
    [CrossRef] [PubMed]
  20. M. Hirano, T. Nakanishi, T. Okunko, and M. Onishi, "Selective FWM-based wavelength conversion realized by highly nonlinear fiber," Proc. European conference on optical communications (ECOC), Cannes Sept. 2006.
  21. J. E. Sharping, M.A. Foster, A.L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, "Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators," Opt. Express 15, 1474-1479 (2007).
    [CrossRef] [PubMed]
  22. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007).
    [CrossRef] [PubMed]

2007 (7)

T. Torounidis and P.A. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007).
[CrossRef] [PubMed]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, "Spectrally flat and broadband double-pumped fiber optical parametric amplifiers," Opt. Express 15, 5288-5309 (2007)
[CrossRef]

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Express 15, 8104-8114 (2007).
[CrossRef] [PubMed]

J.M. Chavez Boggio and H.L. Fragnito, "Simple four-wave mixing based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers," J. Opt. Soc. Am. B 24, 2046-2054 (2007).
[CrossRef]

C. Langrock and M. M. Fejer, "Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides," Opt. Lett. 32, 2263-2265 (2007).
[CrossRef] [PubMed]

J. E. Sharping, M.A. Foster, A.L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, "Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators," Opt. Express 15, 1474-1479 (2007).
[CrossRef] [PubMed]

2006 (2)

V. W. S. Chan, "Free-space optical communications," J. Lightwave Technol. 24, 4750-4762 (2006).
[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J.E. Ford, Y. Fainman, S. Radic, "Parametric wavelength conversion from conventional near-infrared to visible band," IEEE Photon. Technol. Lett. 18, 2445-2447 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

1993 (1)

A.V. Shakhanov, K. M. Golant, A. N. Perov, S. D. Rumyantsev, A. G. Shebunyaev, I. I. Cheremisin, and S. A. Popov, "All-silica optical fibers with reduced losses beyond two microns," Proc. SPIE 1893, 85-89 (1993).
[CrossRef]

1990 (1)

E. A. Golovchenko, P. V.  Mamyshev, A. N.  Pilipetskii,and E. M. Dianov, "Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

1989 (2)

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1167 (1989).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

E. A. Golovchenko, P. V.  Mamyshev, A. N.  Pilipetskii,and E. M. Dianov, "Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Torounidis and P.A. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J.E. Ford, Y. Fainman, S. Radic, "Parametric wavelength conversion from conventional near-infrared to visible band," IEEE Photon. Technol. Lett. 18, 2445-2447 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

A.V. Shakhanov, K. M. Golant, A. N. Perov, S. D. Rumyantsev, A. G. Shebunyaev, I. I. Cheremisin, and S. A. Popov, "All-silica optical fibers with reduced losses beyond two microns," Proc. SPIE 1893, 85-89 (1993).
[CrossRef]

Other (6)

The complex part of the Raman third order nonlinear susceptibility was obtained from available data in the commercial VPI software, while the real part was obtained using Kramers-Kronig relations.

K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L.G. Kazovsky, "Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain," presented at the Conference on Lasers & Electro-Optics, Baltimore, Md., 1-6 June 2003.

C. Weitkamp (Ed.), Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

R. Jiang, N. Alic, C. J. McKinstrie, S. Radic, "Two Pump Parametric Amplifier with 40dB of Equalized Continuous Gain over 50nms," presented at Optical Fiber Communication Conference, (OFC/NFOEC 2007), Anaheim, March 2007.
[CrossRef]

J.M. Chavez Boggio, M. Knutzen, C. Bres, N. Alic, J.R. Windmiller, B. Stossel, K. Rottwitt, S. Radic, "All fiber parametric conversion from near to short wave infrared band," presented at the European Conference on Optical Communications, PD, Berlin, Germany 16-20 September 2007.

M. Hirano, T. Nakanishi, T. Okunko, and M. Onishi, "Selective FWM-based wavelength conversion realized by highly nonlinear fiber," Proc. European conference on optical communications (ECOC), Cannes Sept. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup. AM: amplitude modulator. BPF: band-pass filter. Inset: Far field mode profile for λs=1312 nm.

Fig. 2.
Fig. 2.

κ/2γP as a function of λs for λ p ranging from 1583 to 1588 nm. (a) β4<0 and (b) β4>0.

Fig. 3.
Fig. 3.

Parametric amplification of (a) 1300 nm multiple-tone laser, (b) 1312 nm single-tone laser. The dashed black lines correspond to the pump off state.

Fig. 4.
Fig. 4.

Gain at λs=1312.6 nm as a function of λp. The pump power is maintained at 80 W with an error of less than 10%.

Fig. 5.
Fig. 5.

(a) 1P-OPA gain spectrum: squares (experiment) and continuous lines (numerical fitting including the Raman third order nonlinear susceptibility). (b) 1P-OPA gain spectrum: Gain measurement error is <1dB.

Fig. 6.
Fig. 6.

Raman third order nonlinear susceptibility, χ (3) Raman , as a function of detuning frequency: real component (red line), imaginary component (black line).

Fig. 7.
Fig. 7.

Spectra of the converted waves into the SWIR band for (a) λs=1417 nm, (b) λs=1312.6 nm.

Fig. 8.
Fig. 8.

(a) OPA gain spectrum as a function of the pump power for λp=1585.5 nm. The relative values of the pump power was measured with error less than 5%, while the absolute peak value (90 W) was measured with an error of ±10%. (b) Spectrum at the input of the HNLF when P=90 W.

Fig. 9.
Fig. 9.

OPA gain spectra as a function of pump wavelength. (a) λp tuned from 1584.4 nm (black line) to 1585.8 nm (magenta). (b) λp tuned from 1586 nm (black line) to 1588.8 nm (gray).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ = β 2 ( ω p ) ( ω p ω s ) 2 + β 4 ( ω p ) ( ω p ω s ) 4 12 + 2 γ P ,

Metrics