Abstract

We report an optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) that is synchronously pumped by a femtosecond Ti:sapphire laser at 1 GHz repetition rate. The signal output has a center wavelength of 1558nm and its spectral bandwidth amounts to 40 nm. The OPO operates in a regime where the signal- and idler frequency combs exhibit a partial overlap around 1600 nm. In this near-degeneracy region, a beat at the offset between the signal and idler frequency combs is detected. Phase-locking this beat to an external reference stabilizes the spectral envelopes of the signal- and idler output. At the same time, the underlying frequency combs are stabilized relative to each other with an instability of 1.5×10-17 at 1 s gate time.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C.W. Oates, "Standards of time and frequency at the outset of the 21st century," Science 306, 1318-1324 (2004).
    [CrossRef] [PubMed]
  2. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K. R. Vogel, D. J. Wineland, "An optical clock based on a single trapped199Hg+ ion," Science 293, 825-828 (2001).
    [CrossRef] [PubMed]
  3. M. Takamoto, F. L. Hong, R. Higashi, H. Katori, "An optical lattice clock," Nature (London) 435, 321-324 (2005).
    [CrossRef] [PubMed]
  4. H. G. Dehmelt, "Mono-ion oscillator as potential ultimate laser frequency standard," IEEE Trans. Instrum. Meas. 31, 83-87 (1982).
  5. W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, J. C. Bergquist, "Single-atom optical clock with high accuracy," Phys. Rev. Lett. 97, 020801, 1-4 (2006).
    [CrossRef] [PubMed]
  6. C.W. Oates, E. A. Curtis, L. Hollberg, "Improved short-term stability of optical frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
    [CrossRef]
  7. L. S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, "Frequency uncertainty for optically referenced femtosecond laser frequency combs," IEEE J. Quantum Electron. 43, 139-146 (2007).
    [CrossRef]
  8. A. Bartels, C. W. Oates, L. Hollberg, S. A. Diddams, "Stabilization of femtosecond laser frequency combs with subhertz residual linewidths," Opt. Lett. 29, 1081-1083 (2004).
    [CrossRef] [PubMed]
  9. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, "Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter," Nat. Photonics 1, 283-287 (2007).
    [CrossRef]
  10. N. R. Newbury, W. C. Swann, I. Coddington, L. Lorini, J. C. Bergquist, S. A. Diddams, "Fiber laser-based frequency combs with high relative frequency stability," in Proc. 2007 Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., Geneva, Switzerland, pp. 980-983, (2007).
  11. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, "Fiber-laser frequency combs with subhertz relative linewidths," Opt. Lett. 31, 3046-3048 (2006).
    [CrossRef] [PubMed]
  12. A. Bartels, R. Gebs, M. S. Kirchner, S. A. Diddams, "Spectrally resolved optical frequency combs from a selfreferenced 5 GHz femtosecond laser," Opt. Lett. 32, 2553-2555 (2007).
    [CrossRef] [PubMed]
  13. T. Wilken, T. W. H¨ansch, R. Holzwarth, P. Adel, M. Mei, "Low Phase Noise 250MHz Repetition Rate Fiber fs Laser for Frequency Comb Applications," Conference on Lasers and Electro-Optics (CLEO), CMR3, Baltimore, Maryland, USA, 6-11 May, (2007).
    [CrossRef]
  14. A. Bartels, "Gigahertz femtosecond lasers," in Femtosecond optical frequency comb technology: Principle, operation and application, J. Ye, S. T. Cundiff, eds. (Springer, New York, 2005), pp. 78-96.
    [CrossRef]
  15. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager and N. R. Newbury, "A passively mode-locked fiber laser at 1.54 Ψm with a fundamental repetition frequency reaching 2 GHz," Opt. Express 15, 13155-13166 (2007).
    [CrossRef] [PubMed]
  16. C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, "Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate," Electron. Lett. 40, 805-807 (2004).
    [CrossRef]
  17. X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W.W. Rühle, and H. Giessen, "1-GHz-repetition-rate femtosecond optical parametric oscillator," Appl. Phys. Lett. 80, 1873-1875 (2002).
    [CrossRef]
  18. J. Jiang and T. Hasama, "Harmonic repetition-rate femtosecond optical parametric oscillator," Appl. Phys. B 74, 313-317 (2002).
    [CrossRef]
  19. D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
    [CrossRef]
  20. E. S. Wachman, D. C. Edelstein, and C. L. Tang, "Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator," Opt. Lett. 15, 136-138 (1990).
    [CrossRef] [PubMed]
  21. Y. Kobayashi and K. Torizuka, "Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator," Opt. Lett. 26, 1295-1297 (2001).
    [CrossRef]
  22. A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  23. M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, "Rapid infrared wavelength access with a picosecond PPLN OPO synchronously pumped by a mode-locked diode laser," Appl. Phys. B 73, 1-10 (2001).
    [CrossRef]
  24. J. Sun, B. J. S. Gale, and D. T. Reid, "Testing the parametric energy conservation law in a femtosecond optical parametric oscillator," Opt. Express 15, 4378-4384 (2007).
    [CrossRef] [PubMed]
  25. M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, T. W. Hänsch "Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation," Opt. Lett. 29, 310-312 (2004).
    [CrossRef] [PubMed]

2007

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, "Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter," Nat. Photonics 1, 283-287 (2007).
[CrossRef]

L. S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, "Frequency uncertainty for optically referenced femtosecond laser frequency combs," IEEE J. Quantum Electron. 43, 139-146 (2007).
[CrossRef]

J. Sun, B. J. S. Gale, and D. T. Reid, "Testing the parametric energy conservation law in a femtosecond optical parametric oscillator," Opt. Express 15, 4378-4384 (2007).
[CrossRef] [PubMed]

A. Bartels, R. Gebs, M. S. Kirchner, S. A. Diddams, "Spectrally resolved optical frequency combs from a selfreferenced 5 GHz femtosecond laser," Opt. Lett. 32, 2553-2555 (2007).
[CrossRef] [PubMed]

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager and N. R. Newbury, "A passively mode-locked fiber laser at 1.54 Ψm with a fundamental repetition frequency reaching 2 GHz," Opt. Express 15, 13155-13166 (2007).
[CrossRef] [PubMed]

2006

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, "Fiber-laser frequency combs with subhertz relative linewidths," Opt. Lett. 31, 3046-3048 (2006).
[CrossRef] [PubMed]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, J. C. Bergquist, "Single-atom optical clock with high accuracy," Phys. Rev. Lett. 97, 020801, 1-4 (2006).
[CrossRef] [PubMed]

2005

M. Takamoto, F. L. Hong, R. Higashi, H. Katori, "An optical lattice clock," Nature (London) 435, 321-324 (2005).
[CrossRef] [PubMed]

2004

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C.W. Oates, "Standards of time and frequency at the outset of the 21st century," Science 306, 1318-1324 (2004).
[CrossRef] [PubMed]

C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, "Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate," Electron. Lett. 40, 805-807 (2004).
[CrossRef]

M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, T. W. Hänsch "Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation," Opt. Lett. 29, 310-312 (2004).
[CrossRef] [PubMed]

A. Bartels, C. W. Oates, L. Hollberg, S. A. Diddams, "Stabilization of femtosecond laser frequency combs with subhertz residual linewidths," Opt. Lett. 29, 1081-1083 (2004).
[CrossRef] [PubMed]

2002

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W.W. Rühle, and H. Giessen, "1-GHz-repetition-rate femtosecond optical parametric oscillator," Appl. Phys. Lett. 80, 1873-1875 (2002).
[CrossRef]

J. Jiang and T. Hasama, "Harmonic repetition-rate femtosecond optical parametric oscillator," Appl. Phys. B 74, 313-317 (2002).
[CrossRef]

2001

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K. R. Vogel, D. J. Wineland, "An optical clock based on a single trapped199Hg+ ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Y. Kobayashi and K. Torizuka, "Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator," Opt. Lett. 26, 1295-1297 (2001).
[CrossRef]

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, "Rapid infrared wavelength access with a picosecond PPLN OPO synchronously pumped by a mode-locked diode laser," Appl. Phys. B 73, 1-10 (2001).
[CrossRef]

2000

1999

1996

D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
[CrossRef]

1990

1982

H. G. Dehmelt, "Mono-ion oscillator as potential ultimate laser frequency standard," IEEE Trans. Instrum. Meas. 31, 83-87 (1982).

Appl. Phys. B

M. E. Klein, A. Robertson, M. A. Tremont, R. Wallenstein, and K.-J. Boller, "Rapid infrared wavelength access with a picosecond PPLN OPO synchronously pumped by a mode-locked diode laser," Appl. Phys. B 73, 1-10 (2001).
[CrossRef]

J. Jiang and T. Hasama, "Harmonic repetition-rate femtosecond optical parametric oscillator," Appl. Phys. B 74, 313-317 (2002).
[CrossRef]

Appl. Phys. Lett.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W.W. Rühle, and H. Giessen, "1-GHz-repetition-rate femtosecond optical parametric oscillator," Appl. Phys. Lett. 80, 1873-1875 (2002).
[CrossRef]

Electron. Lett.

C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, "Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate," Electron. Lett. 40, 805-807 (2004).
[CrossRef]

IEEE J. Quantum Electron.

L. S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams, "Frequency uncertainty for optically referenced femtosecond laser frequency combs," IEEE J. Quantum Electron. 43, 139-146 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

H. G. Dehmelt, "Mono-ion oscillator as potential ultimate laser frequency standard," IEEE Trans. Instrum. Meas. 31, 83-87 (1982).

Nat. Photonics

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, "Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter," Nat. Photonics 1, 283-287 (2007).
[CrossRef]

Nature (London)

M. Takamoto, F. L. Hong, R. Higashi, H. Katori, "An optical lattice clock," Nature (London) 435, 321-324 (2005).
[CrossRef] [PubMed]

Opt. Commun.

D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

A. Bartels, R. Gebs, M. S. Kirchner, S. A. Diddams, "Spectrally resolved optical frequency combs from a selfreferenced 5 GHz femtosecond laser," Opt. Lett. 32, 2553-2555 (2007).
[CrossRef] [PubMed]

E. S. Wachman, D. C. Edelstein, and C. L. Tang, "Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator," Opt. Lett. 15, 136-138 (1990).
[CrossRef] [PubMed]

C.W. Oates, E. A. Curtis, L. Hollberg, "Improved short-term stability of optical frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
[CrossRef]

A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
[CrossRef]

Y. Kobayashi and K. Torizuka, "Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator," Opt. Lett. 26, 1295-1297 (2001).
[CrossRef]

M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, T. W. Hänsch "Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation," Opt. Lett. 29, 310-312 (2004).
[CrossRef] [PubMed]

A. Bartels, C. W. Oates, L. Hollberg, S. A. Diddams, "Stabilization of femtosecond laser frequency combs with subhertz residual linewidths," Opt. Lett. 29, 1081-1083 (2004).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, "Fiber-laser frequency combs with subhertz relative linewidths," Opt. Lett. 31, 3046-3048 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, J. C. Bergquist, "Single-atom optical clock with high accuracy," Phys. Rev. Lett. 97, 020801, 1-4 (2006).
[CrossRef] [PubMed]

Science

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C.W. Oates, "Standards of time and frequency at the outset of the 21st century," Science 306, 1318-1324 (2004).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C.W. Oates, K. R. Vogel, D. J. Wineland, "An optical clock based on a single trapped199Hg+ ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Other

N. R. Newbury, W. C. Swann, I. Coddington, L. Lorini, J. C. Bergquist, S. A. Diddams, "Fiber laser-based frequency combs with high relative frequency stability," in Proc. 2007 Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., Geneva, Switzerland, pp. 980-983, (2007).

T. Wilken, T. W. H¨ansch, R. Holzwarth, P. Adel, M. Mei, "Low Phase Noise 250MHz Repetition Rate Fiber fs Laser for Frequency Comb Applications," Conference on Lasers and Electro-Optics (CLEO), CMR3, Baltimore, Maryland, USA, 6-11 May, (2007).
[CrossRef]

A. Bartels, "Gigahertz femtosecond lasers," in Femtosecond optical frequency comb technology: Principle, operation and application, J. Ye, S. T. Cundiff, eds. (Springer, New York, 2005), pp. 78-96.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the Ti:sapphire based femtosecond pump laser, the OPO cavity and the stabilization electronics. Both the Ti:sapphire and the OPO cavity are enclosed in one common box (31 cm×36 cm×9 cm) to reduce environmental perturbations. Solid lines correspond to optical paths and dashed lines to electrical paths. OC1, OC2: output coupler of the Ti:sapphire and the OPO cavity, PPLN: multigrating periodically poled lithium niobate, PZT: piezoelectric transducer, M1, M2, M3: OPO cavity mirrors, PD1, PD2: photodiodes, BS: beamsplitter, BP: optical bandpass filter, S: silver mirror (not part of the cavities), HVA: high voltage amplifier.

Fig. 2.
Fig. 2.

a) Signal and idler spectra of the actively stabilized OPO. Note the spectral overlap at 1600 nm. As the OPO mirrors are not high reflective for wavelengths larger than 1625 nm, the non-resonant part of the idler spectrum is suppressed. The quasi-phase matching period was Λ=19.9 µm.

Fig. 3.
Fig. 3.

Top: Illustration of the origin of the radio frequency (RF) beats. Bottom: A typical RF measurement showing the corresponding beats.

Fig. 4.
Fig. 4.

Out-of-loop measurement of the power spectral density of phase fluctuations S Φ for the beat at the frequency fSIO actively stabilized at 748.8 MHz. The corresponding numerically calculated accumulated phase jitter Φ RMS is plotted versus the axis on the right hand side.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f p = k p × f rep + f 0 , p
f s = k s × f rep + f 0 , s
f i = k i × f rep + f 0 , i ,
f 0 , p = f 0 , s + f 0 , i .
d λ s d Δ L = 1 L C × ( dn g d λ s ) 1 .
f s ( L ) = p × c ¯ L = k s × f rep + f 0 , s ,
f SIO f 0 , i f 0 , s .
f 2 SPO f 0 , p 2 × f 0 , s = f 0 , s + f 0 , i 2 × f 0 , s = f SIO .
Φ RMS ( f min , f max ) ( f min f max S Φ ( f ) d f ) 1 2

Metrics