Abstract

Nonlinear-optical nanocomposite materials with a photonic crystal structure were fabricated using block copolymers and gold nanoparticles. By dispersing the gold nanoparticles into the selective microdomains of the block copolymers, we could achieve the enhancement of nonlinear optical properties as revealed by the Z-scan technique. The optical nonlinearities were enhanced by the local field effect and the effect of the periodic distribution of the microdomains filled with gold nanoparticles. Furthermore, the highest optical nonlinearity was achieved by matching the domain spacing of the copolymers with the frequency of the surface plasmon resonance peak of the gold.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Fink, A. M. Urbas, M. G. Bawendi, J. Joannopoulos, and E. L. Thomas, "Block copolymers as photonic bandgap materials," J. Lightwave Technol. 17, 1963-1969 (1999).
    [CrossRef]
  2. A. M. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters, "Tunable block copolymer/homopolymer photonic crystals," Adv. Mater. 12, 812-814 (2000).
    [CrossRef]
  3. A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, "Bicontinuous cubic block copolymer photonic crystals," Adv. Mater. 14, 1850-1853 (2002).
    [CrossRef]
  4. T. Deng, C. Chen, C. Honker, and E. L. Thomas, "Two-dimentional block copolymer photonic crystals," Polymer 44, 6549-6553 (2003).
    [CrossRef]
  5. J. Yoon, W. Lee, and E. L. Thomas, "Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed Bragg reflectors," Nano. Lett. 6, 2211-2214 (2006).
    [CrossRef] [PubMed]
  6. M. C. Daniel and D. Astruc, "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology," Chem. Rev. 104, 293-346 (2004).
    [CrossRef] [PubMed]
  7. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of block electronic nonlinear refraction in solids," IEEE J. Quantum Electron 27, 1296-1309 (1991).
    [CrossRef]
  8. Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, "Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles," J. Phys. Chem. B 109, 4865-4871 (2005).
    [CrossRef]
  9. S. T. Selvan, T. Hayakawa, M. Nogami, Y. Kobayashi, L. M. Liz-Marzan, Y. Hamanaka, and A. Nakamura, "Sol-gel derived nanoclusters in silica glass possessing large optical nonlinearities," J. Phys. Chem. B 106, 10157-10162 (2002).
    [CrossRef]
  10. H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, "Enhancement of optical nonlinearity in periodic gold nanoparticle arrays," Nanotechnology 17, 4274-4277 (2006).
    [CrossRef] [PubMed]
  11. T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, "Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO," J. Phys. D: Appl. Phys. 40, 6705-6708 (2007).
    [CrossRef]
  12. W. Wang, Y. Wang, Z. Dai, Y. Sun, and Y. Sun, "Nonlinear optical properties of periodic gold nanoparticle arrays," Appl. Surf. Sci. 253, 4673-4676 (2007).
    [CrossRef]
  13. M. R. Bockstaller, Y. Lapetnikov, S. Margel, and E. L. Thomas, "Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures," J. Am. Chem. Soc. 125, 5276-5277 (2003).
    [CrossRef] [PubMed]
  14. J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer, and D. J. Pine, "Distribution of nanoparticles in lamellar domains of block copolymers," Macromolecules 40, 3361-3365 (2007).
    [CrossRef]
  15. M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, "Block copolymer nanocomposites: perspectives for tailored functional materials," Adv. Mater. 17, 1331-1349 (2005).
    [CrossRef]
  16. K. Imura and H. Okamoto, "Plasmon wavefunction imaging and dynamic near-field optical microscopy of noble metal nanoparticles," J. Spectrosc. Soc. Jpn. 55, 161-172 (2006).
    [CrossRef]
  17. G. Wang, Y. Zhang, Y. Cui, M. Duan, and M. Liu, "Study on the non-linear refraction of silver nanoparticles with aggregation effect," Opt. Commun. 249, 311-317 (2005).
    [CrossRef]
  18. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in two-phase liquid-liquid," J. Chem. Soc. Chem. Commun.801-802 (1994).
    [CrossRef]
  19. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  20. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, "Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals," Opt. Mater. 15, 237-242 (2001).
    [CrossRef]
  21. K. H. Su, Q. H. Wei, J. J. Mock, D. R. Smith, S. Schultz, and X. Zhang, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
    [CrossRef]
  22. K. J. Hanley, C. Huang, and T. P. Lodge, "Phase behavior of a block copolymer in solvents of varying selectivity," Macromolecules 33, 5918-5931 (2000).
    [CrossRef]
  23. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, T. Tokizaki, A. Nakamura, and A. J. Ikushima, "Optical nonlinearities of a high concentration of small metal particles dispersed in glass : copper and silver particles," J. Opt. Soc. Am. B 11, 1236-1243 (1994).
    [CrossRef]
  24. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids : the case gold," Appl. Phys. A 47, 347-357 (1988).
    [CrossRef]
  25. S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Lett. 94, 103904 (2005).
    [CrossRef]
  26. Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, "Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties," Appl. Phys. Lett. 88, 081110 (2006).
    [CrossRef]

2007

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, "Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO," J. Phys. D: Appl. Phys. 40, 6705-6708 (2007).
[CrossRef]

W. Wang, Y. Wang, Z. Dai, Y. Sun, and Y. Sun, "Nonlinear optical properties of periodic gold nanoparticle arrays," Appl. Surf. Sci. 253, 4673-4676 (2007).
[CrossRef]

J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer, and D. J. Pine, "Distribution of nanoparticles in lamellar domains of block copolymers," Macromolecules 40, 3361-3365 (2007).
[CrossRef]

2006

K. Imura and H. Okamoto, "Plasmon wavefunction imaging and dynamic near-field optical microscopy of noble metal nanoparticles," J. Spectrosc. Soc. Jpn. 55, 161-172 (2006).
[CrossRef]

J. Yoon, W. Lee, and E. L. Thomas, "Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed Bragg reflectors," Nano. Lett. 6, 2211-2214 (2006).
[CrossRef] [PubMed]

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, "Enhancement of optical nonlinearity in periodic gold nanoparticle arrays," Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, "Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties," Appl. Phys. Lett. 88, 081110 (2006).
[CrossRef]

2005

S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Lett. 94, 103904 (2005).
[CrossRef]

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, "Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles," J. Phys. Chem. B 109, 4865-4871 (2005).
[CrossRef]

G. Wang, Y. Zhang, Y. Cui, M. Duan, and M. Liu, "Study on the non-linear refraction of silver nanoparticles with aggregation effect," Opt. Commun. 249, 311-317 (2005).
[CrossRef]

M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, "Block copolymer nanocomposites: perspectives for tailored functional materials," Adv. Mater. 17, 1331-1349 (2005).
[CrossRef]

2004

M. C. Daniel and D. Astruc, "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology," Chem. Rev. 104, 293-346 (2004).
[CrossRef] [PubMed]

2003

T. Deng, C. Chen, C. Honker, and E. L. Thomas, "Two-dimentional block copolymer photonic crystals," Polymer 44, 6549-6553 (2003).
[CrossRef]

M. R. Bockstaller, Y. Lapetnikov, S. Margel, and E. L. Thomas, "Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures," J. Am. Chem. Soc. 125, 5276-5277 (2003).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, J. J. Mock, D. R. Smith, S. Schultz, and X. Zhang, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

2002

S. T. Selvan, T. Hayakawa, M. Nogami, Y. Kobayashi, L. M. Liz-Marzan, Y. Hamanaka, and A. Nakamura, "Sol-gel derived nanoclusters in silica glass possessing large optical nonlinearities," J. Phys. Chem. B 106, 10157-10162 (2002).
[CrossRef]

A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, "Bicontinuous cubic block copolymer photonic crystals," Adv. Mater. 14, 1850-1853 (2002).
[CrossRef]

2001

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, "Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals," Opt. Mater. 15, 237-242 (2001).
[CrossRef]

2000

K. J. Hanley, C. Huang, and T. P. Lodge, "Phase behavior of a block copolymer in solvents of varying selectivity," Macromolecules 33, 5918-5931 (2000).
[CrossRef]

A. M. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters, "Tunable block copolymer/homopolymer photonic crystals," Adv. Mater. 12, 812-814 (2000).
[CrossRef]

1999

1994

1991

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of block electronic nonlinear refraction in solids," IEEE J. Quantum Electron 27, 1296-1309 (1991).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1988

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids : the case gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

Adv. Mater.

A. M. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters, "Tunable block copolymer/homopolymer photonic crystals," Adv. Mater. 12, 812-814 (2000).
[CrossRef]

A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, "Bicontinuous cubic block copolymer photonic crystals," Adv. Mater. 14, 1850-1853 (2002).
[CrossRef]

M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, "Block copolymer nanocomposites: perspectives for tailored functional materials," Adv. Mater. 17, 1331-1349 (2005).
[CrossRef]

Appl. Phys. A

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids : the case gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

Appl. Phys. Lett.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, "Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties," Appl. Phys. Lett. 88, 081110 (2006).
[CrossRef]

Appl. Surf. Sci.

W. Wang, Y. Wang, Z. Dai, Y. Sun, and Y. Sun, "Nonlinear optical properties of periodic gold nanoparticle arrays," Appl. Surf. Sci. 253, 4673-4676 (2007).
[CrossRef]

Chem. Rev.

M. C. Daniel and D. Astruc, "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology," Chem. Rev. 104, 293-346 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of block electronic nonlinear refraction in solids," IEEE J. Quantum Electron 27, 1296-1309 (1991).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Am. Chem. Soc.

M. R. Bockstaller, Y. Lapetnikov, S. Margel, and E. L. Thomas, "Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures," J. Am. Chem. Soc. 125, 5276-5277 (2003).
[CrossRef] [PubMed]

J. Chem. Soc. Chem. Commun.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in two-phase liquid-liquid," J. Chem. Soc. Chem. Commun.801-802 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Chem. B

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, "Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles," J. Phys. Chem. B 109, 4865-4871 (2005).
[CrossRef]

S. T. Selvan, T. Hayakawa, M. Nogami, Y. Kobayashi, L. M. Liz-Marzan, Y. Hamanaka, and A. Nakamura, "Sol-gel derived nanoclusters in silica glass possessing large optical nonlinearities," J. Phys. Chem. B 106, 10157-10162 (2002).
[CrossRef]

J. Phys. D: Appl. Phys.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, "Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO," J. Phys. D: Appl. Phys. 40, 6705-6708 (2007).
[CrossRef]

J. Spectrosc. Soc. Jpn.

K. Imura and H. Okamoto, "Plasmon wavefunction imaging and dynamic near-field optical microscopy of noble metal nanoparticles," J. Spectrosc. Soc. Jpn. 55, 161-172 (2006).
[CrossRef]

Macromolecules

J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer, and D. J. Pine, "Distribution of nanoparticles in lamellar domains of block copolymers," Macromolecules 40, 3361-3365 (2007).
[CrossRef]

K. J. Hanley, C. Huang, and T. P. Lodge, "Phase behavior of a block copolymer in solvents of varying selectivity," Macromolecules 33, 5918-5931 (2000).
[CrossRef]

Nano Lett.

K. H. Su, Q. H. Wei, J. J. Mock, D. R. Smith, S. Schultz, and X. Zhang, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Nano. Lett.

J. Yoon, W. Lee, and E. L. Thomas, "Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed Bragg reflectors," Nano. Lett. 6, 2211-2214 (2006).
[CrossRef] [PubMed]

Nanotechnology

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, "Enhancement of optical nonlinearity in periodic gold nanoparticle arrays," Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Opt. Commun.

G. Wang, Y. Zhang, Y. Cui, M. Duan, and M. Liu, "Study on the non-linear refraction of silver nanoparticles with aggregation effect," Opt. Commun. 249, 311-317 (2005).
[CrossRef]

Opt. Mater.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, "Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals," Opt. Mater. 15, 237-242 (2001).
[CrossRef]

Phys. Lett.

S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Lett. 94, 103904 (2005).
[CrossRef]

Polymer

T. Deng, C. Chen, C. Honker, and E. L. Thomas, "Two-dimentional block copolymer photonic crystals," Polymer 44, 6549-6553 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

TEM images of polymer/PS-Au nanocomposite films: (a) PS/PS-Au (ϕPS100), (b) PS-b-PMMA/PS-Au (ϕPS31), (c) PS-b-PMMA/PMMA/PS-Au (ϕPS10), (d) PS-b-PMMA/PMMA/PS-Au (ϕPS3). Scale bar is 100 nm.

Fig. 2.
Fig. 2.

Visible absorption spectra of the polymer/PS-Au nanocomposite films: (a) PS/PS-Au (ϕPS100), (b) PS-b-PMMA/PS-Au (ϕPS31), (c) PS-b-PMMA/PMMA/PS-Au (ϕPS10) and (d) PS-b-PMMA/PMMA/PS-Au (ϕPS3). Control samples are also shown: (e) PS-Au in toluene and (f) PS-b-PMMA without PS-Au. The arrows indicate the SPR peak positions: (a) 527 nm, (b) 527 nm, (c) 537 nm, (d) 542 nm and (e) 527 nm. A SPR peak shift is observed in (c) and (d).

Fig. 3.
Fig. 3.

The values of the third-order susceptibility, χ(3), of ϕPS100, ϕPS3, ϕPS31 and ϕPS10. Three horizontal lines on each error bar represent the values of χ(3) obtained for three independent Z-scan measurements. The filled circles denote the average values of χ(3). The highest value of χ(3) was observed for ϕPS10, while the lowest for ϕPS100.

Fig. 4.
Fig. 4.

Polymer concentration dependence of the reflection peak wavelength (a) and χ(3) (b) of the PS-b-PtBMA/PS-Au solutions, and the comparison of χ(3) as a function of the apparent domain spacing of the template polymer solutions with the normalized SPR spectrum of PS-Au (c). (a) Error bars represent the full width at half maximum of the reflection peaks. The marks (triangles and squares) indicate the peak wavelengths obtained by temperature variations at the corresponding polymer concentration from 22 to 26 wt.%. (b) The horizontal lines on the error bars represent the values of χ(3) that were determined by three Z-scan measurements and the filled circles and the triangles denote the average values of χ(3). The upper point (filled circle) at 10 wt.% indicates the χ(3) measured at the part with the iridescent color and the lower point (triangle) indicates that of the part without iridescent color. The results of 22, 24 and 26 wt.% were the results obtained at room temperature for the samples that have the reflection peak wavelength at 513, 524 and 543 nm, respectively. (c) The SPR spectrum intensity was normalized after the subtraction of background coming from band to band transition and surperimposed onto the values of χ(3). The domain spacing was calculated from the reflection wavelength using the volume averaged refractive index and is shown as the upper axis. Three horizontal lines on each error bars represent the χ(3) of the three independent Z-scan measurements and the average values of χ(3) is denoted by the filled circles.

Metrics