Abstract

Femtosecond and nanosecond laser-induced breakdown spectroscopy (LIBS) were used to study trinitrotoluene (TNT) deposited on aluminum substrates. Over the detection wavelength range of 200–785 nm, we have observed emission from CN and C2 molecules as the marker for the explosive with femtosecond LIBS. In contrast, the signal for nanosecond LIBS of TNT is dominated by emission from the elemental constituents of the explosive. Aluminum emission lines from the substrate are also observed with both femtosecond and nanosecond excitation and indicate the role played by the substrate in the interaction.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Nolte, "Micromachining," in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2003).
  2. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spectrosc. 55, 286, (2001).
    [CrossRef]
  3. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, "Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys," Spectrochim. Acta Part B 56, 987-1002 (2001).
    [CrossRef]
  4. J. M. Vadillo and J. J. Laserna, "Laser-induced plasma spectrometry: truly a surface analytical tool," Spectrochim. Acta Part B 59,147-161 (2004).
    [CrossRef]
  5. S. M. Hankin, A. D. Tasker, L. Robson, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhal, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Issac, and S. Jamison, "Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules," Rapid Commun. Mass Spectrom. 16, 111-116 (2002).
    [CrossRef]
  6. C. McEnnis, Y. Dikmelik, and J. B. Spicer, "Femtosecond laser-induced fragmentation and cluster formation studies of solid phase trinitrotoluene using time-of-flight mass spectrometry," Appl. Surf. Sci. 254, 557-562 (2007).
    [CrossRef]
  7. U. Panne, "Laser induced breakdown spectroscopy (LIBS) in environmental and process analysis," in Laser in Environmental and Life Sciences, Springer, P. Hering, J. P. Lay, and S. Stry, eds. (Springer-Verlag, Berlin, 2004), p. 99.
  8. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, "Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes," J. Anal. At. Spectrom. 19, 437-444 (2004).
    [CrossRef]
  9. F. C. De LuciaJr., R. S. Harmon, K. L. McNesby, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy analysis of energetic materials," Appl. Opt. 42, 6148-6152 (2003).
    [CrossRef]
  10. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
    [CrossRef]
  11. National Institute of Standards and Technology Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD.
  12. J. B. Lurie and M. A. El-Sayed, "Chemiluminescence of CN radicals formed from reaction of nitric oxide with multiphoton electronic excitation photofragments of toluene," J. Phys. Chem. 84, 3348-3351 (1980).
    [CrossRef]
  13. A. Portnov, S. Rosenwaks, and I. Bar, "Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air," Appl. Opt. 42, 2835-2842 (2003).
    [CrossRef] [PubMed]
  14. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy," Appl. Phys. Lett. 88, 063901 (2006).
    [CrossRef]
  15. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 084701 (2006).
    [CrossRef]
  16. K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, "A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules," Rapid. Commun. Mass Spectrom. 9, 1522-1527 (1995).
    [CrossRef]
  17. C. Frischkorn and M. Wolf, "Femtochemistry at metal surfaces: nonadiabatic reaction dynamics," Chem. Rev. 106, 4207-4233 (2006).
    [CrossRef] [PubMed]

2007 (1)

C. McEnnis, Y. Dikmelik, and J. B. Spicer, "Femtosecond laser-induced fragmentation and cluster formation studies of solid phase trinitrotoluene using time-of-flight mass spectrometry," Appl. Surf. Sci. 254, 557-562 (2007).
[CrossRef]

2006 (4)

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy," Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

C. Frischkorn and M. Wolf, "Femtochemistry at metal surfaces: nonadiabatic reaction dynamics," Chem. Rev. 106, 4207-4233 (2006).
[CrossRef] [PubMed]

2004 (2)

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, "Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes," J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

J. M. Vadillo and J. J. Laserna, "Laser-induced plasma spectrometry: truly a surface analytical tool," Spectrochim. Acta Part B 59,147-161 (2004).
[CrossRef]

2003 (2)

2002 (1)

S. M. Hankin, A. D. Tasker, L. Robson, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhal, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Issac, and S. Jamison, "Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules," Rapid Commun. Mass Spectrom. 16, 111-116 (2002).
[CrossRef]

2001 (2)

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spectrosc. 55, 286, (2001).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, "Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys," Spectrochim. Acta Part B 56, 987-1002 (2001).
[CrossRef]

1995 (1)

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, "A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules," Rapid. Commun. Mass Spectrom. 9, 1522-1527 (1995).
[CrossRef]

1980 (1)

J. B. Lurie and M. A. El-Sayed, "Chemiluminescence of CN radicals formed from reaction of nitric oxide with multiphoton electronic excitation photofragments of toluene," J. Phys. Chem. 84, 3348-3351 (1980).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy," Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

C. McEnnis, Y. Dikmelik, and J. B. Spicer, "Femtosecond laser-induced fragmentation and cluster formation studies of solid phase trinitrotoluene using time-of-flight mass spectrometry," Appl. Surf. Sci. 254, 557-562 (2007).
[CrossRef]

Chem. Rev. (1)

C. Frischkorn and M. Wolf, "Femtochemistry at metal surfaces: nonadiabatic reaction dynamics," Chem. Rev. 106, 4207-4233 (2006).
[CrossRef] [PubMed]

J. Anal. At. Spectrom. (2)

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, "Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes," J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Phys. Chem. (1)

J. B. Lurie and M. A. El-Sayed, "Chemiluminescence of CN radicals formed from reaction of nitric oxide with multiphoton electronic excitation photofragments of toluene," J. Phys. Chem. 84, 3348-3351 (1980).
[CrossRef]

Rapid Commun. Mass Spectrom. (1)

S. M. Hankin, A. D. Tasker, L. Robson, K. W. D. Ledingham, X. Fang, P. McKenna, T. McCanny, R. P. Singhal, C. Kosmidis, P. Tzallas, D. A. Jaroszynski, D. R. Jones, R. C. Issac, and S. Jamison, "Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules," Rapid Commun. Mass Spectrom. 16, 111-116 (2002).
[CrossRef]

Rapid. Commun. Mass Spectrom. (1)

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, "A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules," Rapid. Commun. Mass Spectrom. 9, 1522-1527 (1995).
[CrossRef]

Spectrochim. Acta Part B (2)

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, "Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys," Spectrochim. Acta Part B 56, 987-1002 (2001).
[CrossRef]

J. M. Vadillo and J. J. Laserna, "Laser-induced plasma spectrometry: truly a surface analytical tool," Spectrochim. Acta Part B 59,147-161 (2004).
[CrossRef]

Other (3)

S. Nolte, "Micromachining," in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2003).

National Institute of Standards and Technology Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD.

U. Panne, "Laser induced breakdown spectroscopy (LIBS) in environmental and process analysis," in Laser in Environmental and Life Sciences, Springer, P. Hering, J. P. Lay, and S. Stry, eds. (Springer-Verlag, Berlin, 2004), p. 99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental apparatus used to collect LIBS signals. ICCD: intensified charge-coupled device.

Fig. 2.
Fig. 2.

Nanosecond LIBS signal obtained from TNT on an aluminum substrate. The detection gate delay and width values were 1 µs and 2 µs, respectively.

Fig. 3.
Fig. 3.

Femtosecond LIBS signal obtained from TNT on an aluminum substrate: (a) over the complete detection wavelength range; (b) expanded view of emission from CN. The detection gate delay and width values were 100 ns and 1 µs, respectively.

Metrics