Abstract

In this paper we present a new high-contrast photoacoustic tomography (PAT) imaging system using a 4f acoustic lens, a 64-element linear transducer array and peak-hold technology. This PAT imaging system has been developed to obtain three-dimensional (3D) PAT images of experimental samples. By utilizing a 4f acoustic lens, the photoacoustic (PA) signals generated from the sample are directly imaged on the imaging plane and collected by the 64-element linear transducer array, which changes them into the corresponding electronic signals. Then we can get one-dimensional (1D) images from the electronic signals using a peak detection-and-hold circuit. After vertical scanning with a stepping motor on the imaging plane, a 2D PA image of the sample is successfully obtained. Combined with the time-resolved technique, we can then get 3D PAT images. The results show that the reconstructed images agree well with the original samples.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. J. Siphanto, K. K. Thumma, and R. G. M. Kolkman, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005).
    [CrossRef] [PubMed]
  2. R. G. M. Kolkman, J. H. G. M. Klaessens, and E. Hondebrink, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 47454756 (2004).
    [CrossRef]
  3. X. D. Wang, Y. J. Pang, and G. Ku, "Non-invasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain" Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef] [PubMed]
  4. A. A. Oraesky, A. A. Karabutov, and V. S. Solomatin, "Laser optoacoustic imaging of breast cancer in vivo," Proc. SPIE 4256, 12-22 (2001).
  5. C. G. A. Hoelen, F. F. M. de Mul, and R. Pongers, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  6. H. F. Zhang, K. Maslov, and M. L. Li, "In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy," Opt. Express 14, 9317-9323 (2006).
    [CrossRef] [PubMed]
  7. K. H. Song, G. Stoica, and L. H. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006).
    [CrossRef] [PubMed]
  8. X. D. Wang, X. Y. Xie, and G. Ku, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 1-9 (2006).
    [CrossRef] [PubMed]
  9. M. H. Xu and L. H. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 1-22 (2006).
    [CrossRef]
  10. M. H. Xu and L. H. Wang, "Time-Domain Reconstruction for Thermoacoustic Tomography in a Spherical Geometry," IEEE Trans. Med. Imag. 21, 814-822 (2002).
    [CrossRef]
  11. K. P. Köstli and P. C. Beard, "Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response," Appl. Opt. 42, 1899-1908 (2003).
    [CrossRef] [PubMed]
  12. Y. Wang, D. Xing, and Y. G. Zeng, "Photoacoustic imaging with deconvolution algorithm," Phys. Med. Biol. 49, 3117-3124 (2004).
    [CrossRef] [PubMed]
  13. B. Z. Yin, D. Xing, and Y. Wang, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
    [CrossRef] [PubMed]
  14. D. W. Yang, D. Xing, and H. M. Gu "Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm," Appl. Phys. Lett. 87, 194101 1-3 (2005).
    [CrossRef]
  15. J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
    [CrossRef]
  16. Z. X. Chen, Z. L. tang, and W. Wan "Photoacoustic tomography imaging based on an acoustic lens imaging system," Acta. Phys. Sin. 55, 4365-4370 (2006).
  17. W. Wan, R. S. Liang, and Z. L. Tang, "The imaging property of photoacoustic Fourier imaging and tomography using an acoustic lens imaging system," J. Appl. Phys. 101, 063103 1-7 (2007).
    [CrossRef]
  18. Z. X. Chen, Z. L. tang, and W. Wan, "Photoacoustic tomography imaging based on a 4f acoustic lens imaging system," Opt. Express 15, 4966-4976 (2007).
    [CrossRef] [PubMed]

2007 (2)

W. Wan, R. S. Liang, and Z. L. Tang, "The imaging property of photoacoustic Fourier imaging and tomography using an acoustic lens imaging system," J. Appl. Phys. 101, 063103 1-7 (2007).
[CrossRef]

Z. X. Chen, Z. L. tang, and W. Wan, "Photoacoustic tomography imaging based on a 4f acoustic lens imaging system," Opt. Express 15, 4966-4976 (2007).
[CrossRef] [PubMed]

2006 (5)

Z. X. Chen, Z. L. tang, and W. Wan "Photoacoustic tomography imaging based on an acoustic lens imaging system," Acta. Phys. Sin. 55, 4365-4370 (2006).

H. F. Zhang, K. Maslov, and M. L. Li, "In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy," Opt. Express 14, 9317-9323 (2006).
[CrossRef] [PubMed]

K. H. Song, G. Stoica, and L. H. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

X. D. Wang, X. Y. Xie, and G. Ku, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 1-9 (2006).
[CrossRef] [PubMed]

M. H. Xu and L. H. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 1-22 (2006).
[CrossRef]

2005 (2)

R. J. Siphanto, K. K. Thumma, and R. G. M. Kolkman, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, and H. M. Gu "Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm," Appl. Phys. Lett. 87, 194101 1-3 (2005).
[CrossRef]

2004 (4)

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

Y. Wang, D. Xing, and Y. G. Zeng, "Photoacoustic imaging with deconvolution algorithm," Phys. Med. Biol. 49, 3117-3124 (2004).
[CrossRef] [PubMed]

B. Z. Yin, D. Xing, and Y. Wang, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

R. G. M. Kolkman, J. H. G. M. Klaessens, and E. Hondebrink, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 47454756 (2004).
[CrossRef]

2003 (2)

X. D. Wang, Y. J. Pang, and G. Ku, "Non-invasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain" Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

K. P. Köstli and P. C. Beard, "Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response," Appl. Opt. 42, 1899-1908 (2003).
[CrossRef] [PubMed]

2002 (1)

M. H. Xu and L. H. Wang, "Time-Domain Reconstruction for Thermoacoustic Tomography in a Spherical Geometry," IEEE Trans. Med. Imag. 21, 814-822 (2002).
[CrossRef]

2001 (1)

A. A. Oraesky, A. A. Karabutov, and V. S. Solomatin, "Laser optoacoustic imaging of breast cancer in vivo," Proc. SPIE 4256, 12-22 (2001).

1998 (1)

Acta. Phys. Sin. (1)

Z. X. Chen, Z. L. tang, and W. Wan "Photoacoustic tomography imaging based on an acoustic lens imaging system," Acta. Phys. Sin. 55, 4365-4370 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. W. Yang, D. Xing, and H. M. Gu "Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm," Appl. Phys. Lett. 87, 194101 1-3 (2005).
[CrossRef]

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

IEEE Trans. Med. Imag. (1)

M. H. Xu and L. H. Wang, "Time-Domain Reconstruction for Thermoacoustic Tomography in a Spherical Geometry," IEEE Trans. Med. Imag. 21, 814-822 (2002).
[CrossRef]

J. Appl. Phys. (1)

W. Wan, R. S. Liang, and Z. L. Tang, "The imaging property of photoacoustic Fourier imaging and tomography using an acoustic lens imaging system," J. Appl. Phys. 101, 063103 1-7 (2007).
[CrossRef]

J. Biomed. Opt. (1)

X. D. Wang, X. Y. Xie, and G. Ku, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 1-9 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. D. Wang, Y. J. Pang, and G. Ku, "Non-invasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain" Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (3)

R. G. M. Kolkman, J. H. G. M. Klaessens, and E. Hondebrink, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 47454756 (2004).
[CrossRef]

Y. Wang, D. Xing, and Y. G. Zeng, "Photoacoustic imaging with deconvolution algorithm," Phys. Med. Biol. 49, 3117-3124 (2004).
[CrossRef] [PubMed]

B. Z. Yin, D. Xing, and Y. Wang, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A. Oraesky, A. A. Karabutov, and V. S. Solomatin, "Laser optoacoustic imaging of breast cancer in vivo," Proc. SPIE 4256, 12-22 (2001).

Rev. Sci. Instrum. (1)

M. H. Xu and L. H. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 1-22 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for PAT imaging based on a 4f acoustic lens and peak-hold technology.

Fig. 2.
Fig. 2.

A PA signal (a) and its peak-value signal (b) observed by an oscilloscope.

Fig. 3.
Fig. 3.

Sample consisting of two black adhesive tape points stuck to a piece of polymethylmethacrylate submerged in milk (a) and the corresponding PA image using the new system (b).

Fig. 4.
Fig. 4.

Sample consisting of two black adhesive tape points stuck to a piece of polymethylmethacrylate submerged in milk (a) and the corresponding PA image using our former system (b).

Fig. 5.
Fig. 5.

Front (a) and side (b) elevations of a sample which consists of two different patterns: three black adhesive tape points stuck to the front and two black adhesive tape points stuck to the back of a piece of polymethylmethacrylate.

Fig. 6
Fig. 6

(a). PA signal and its peak-value signal of the front layer. (b) PA signal and its peak-value signal of the back layer.

Fig. 7.
Fig. 7.

PAT images of the two sides of the sample: (a) the front, consisting of three points, and (b) the back, consisting of two points.

Metrics