Abstract

We demonstrate a room-temperature operation of the near-infrared femtosecond optical parametric oscillator based on MgO-doped stoichiometric periodically-poled lithium niobate, which is synchronously pumped by a Kerr-lens mode-locked Ti:sapphire laser. Wide tunability in the range from 0.98 µm to 1.50 µm was enabled for a single set of cavity mirrors by incorporating a BK7 window as an output coupler. For the output coupling ratio of 3.7%, the threshold pumping power of 460 mW and the slope power conversion efficiency of 37% were achieved. By controlling dispersion values with intra-cavity prisms, femtosecond pulses as short as 66 fs could be obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. C. Edelstein, E. S. Wachman, C. L. Tang, "Broadly tunable high repetition rate femtosecond optical parametric oscillator," Appl. Phys. Lett. 54, 1728-1730 (1989).
    [CrossRef]
  2. R. J. Ellingson and C. L. Tang, "High-power, high-repetition-rate femtosecond pulses tunable in the visible," Opt. Lett. 18, 438-440 (1993).
    [CrossRef] [PubMed]
  3. H. M. van Driel, "Synchronously pumped optical parametric oscillators," Appl. Phys. B 60, 411-420 (1995).
    [CrossRef]
  4. S. W. McCahon, S. A. Anson, D.-J. Jang, M. E. Flatté, T. F. Boggess, D. H. Chow, T. C. Hasenberg, and C. H. Grein, "Carrier recombination dynamics in a (GaInSb/InAs)/AlGaSb superlattice multiple quantum well," Appl. Phys. Lett. 68, 2135-2137 (1996).
    [CrossRef]
  5. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  6. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102- (1995).
    [CrossRef]
  8. T. Kartaloğlu, K. G. Köprülü, O. Aytür, M. Sundheimer, and W. P. Risk, "Femtosecond optical parametric oscillator based on periodically poled KTiOPO4," Opt. Lett. 23, 61-63 (1998).
    [CrossRef]
  9. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, "Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate," Opt. Lett. 22, 1458-1460 (1997).
    [CrossRef]
  10. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
    [CrossRef]
  11. T. Andres, P. Haag, S. Zelt, J. P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, "Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate," Appl. Phys. B 76, 241-244 (2003).
    [CrossRef]
  12. H. P. Li, D. Y. Tang, S. P. Ng, and J. Kong, "Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3," Opt. Laser Technol. 38, 192-195 (2006).
    [CrossRef]

2006

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

H. P. Li, D. Y. Tang, S. P. Ng, and J. Kong, "Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3," Opt. Laser Technol. 38, 192-195 (2006).
[CrossRef]

2003

T. Andres, P. Haag, S. Zelt, J. P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, "Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate," Appl. Phys. B 76, 241-244 (2003).
[CrossRef]

2000

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

1998

1997

1996

S. W. McCahon, S. A. Anson, D.-J. Jang, M. E. Flatté, T. F. Boggess, D. H. Chow, T. C. Hasenberg, and C. H. Grein, "Carrier recombination dynamics in a (GaInSb/InAs)/AlGaSb superlattice multiple quantum well," Appl. Phys. Lett. 68, 2135-2137 (1996).
[CrossRef]

1995

H. M. van Driel, "Synchronously pumped optical parametric oscillators," Appl. Phys. B 60, 411-420 (1995).
[CrossRef]

1993

1989

D. C. Edelstein, E. S. Wachman, C. L. Tang, "Broadly tunable high repetition rate femtosecond optical parametric oscillator," Appl. Phys. Lett. 54, 1728-1730 (1989).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Appl. Phys. B

H. M. van Driel, "Synchronously pumped optical parametric oscillators," Appl. Phys. B 60, 411-420 (1995).
[CrossRef]

T. Andres, P. Haag, S. Zelt, J. P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, "Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate," Appl. Phys. B 76, 241-244 (2003).
[CrossRef]

Appl. Phys. Lett

S. W. McCahon, S. A. Anson, D.-J. Jang, M. E. Flatté, T. F. Boggess, D. H. Chow, T. C. Hasenberg, and C. H. Grein, "Carrier recombination dynamics in a (GaInSb/InAs)/AlGaSb superlattice multiple quantum well," Appl. Phys. Lett. 68, 2135-2137 (1996).
[CrossRef]

Appl. Phys. Lett.

D. C. Edelstein, E. S. Wachman, C. L. Tang, "Broadly tunable high repetition rate femtosecond optical parametric oscillator," Appl. Phys. Lett. 54, 1728-1730 (1989).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Opt. Express

Opt. Laser Technol.

H. P. Li, D. Y. Tang, S. P. Ng, and J. Kong, "Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3," Opt. Laser Technol. 38, 192-195 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Other

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102- (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the PPMgSLN based femtosecond OPO with a ring-type configuration. PPMgSLN, periodically poled lithium niobate doped with 1.3 mol % MgO; L, 15 cm focal length plano-convex lens, M1&M2, spherical mirrors with 15 cm radius of curvature; M3&M4, flat mirrors; P, SF11 equilateral prism; PZT, piezoelectric actuator; PD, photodiode; BK7, transparent window used for an output coupler.

Fig. 2.
Fig. 2.

(a). Signal spectrum obtained for different pump wavelengths for a poling period of Λ=20.8 µm at room temperature. (b). Signal and calculated idler wavelengths and calculated tuning curve for the signal and the idler with a QPM period of Λ=20.8 µm at room temperature.

Fig. 3.
Fig. 3.

The signal output power as a function of the signal wavelength which is continuously tunable by adjusting the cavity length and changing the pump wavelength. The inset shows the signal power as a function of pump intensity for fixed signal and pumping wavelengths of 0.792 µm and 1.225 µm, respectively.

Fig. 4.
Fig. 4.

The output pulse spectrum ((a), (c), (e)) and cross correlation intensity as a function of time delay ((b), (d), (f)) for the case of transformed limited, negative dispersion, and positive dispersion. The insets of Fig. 4(a), 4(c), 4(e) depicts the change of the signal wavelength as a function of cavity length displacement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( k s + 2 π Λ ) × sin θ = k i × sin θ , k p = ( k s + 2 π Λ ) × cos θ + k i × cos θ ,

Metrics