Abstract

We present a detailed experimental and modeling study of fiber lasers passively mode locked using stimulated Raman scattering. We present experimental measurements of the mode locking behavior, and use the model to elucidate the nonlinear processes that create the intracavity pulses and determine the repetition rate and the order of fundamental and Raman pulses. We also present a simple method for harmonic mode locking Raman fiber lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Norman and M. Verkas, "Fiber Lasers Prove Attractive for Industrial Applications," Laser Focus World, August 2007 (PennWell).
  2. A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, "Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser," Opt. Commun. 186, 311-317 (2000).
    [CrossRef]
  3. D. Marcuse, "Pulsing behavior of a three-level laser with saturable absorber," IEEE J. Quantum Electron. 29, 2390-2396 (1993).
    [CrossRef]
  4. F. Z. Qamar and T.A. King, "Self pulsations and self Q-switching in Ho3+, Pr3+:ZBLAN fiber lasers at 2.87 μm," Appl. Phys. B 81, 821-826 (2005).
    [CrossRef]
  5. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt. Lett. 22, 298-300 (1997).
    [CrossRef] [PubMed]
  6. G. Ravet, A. A. Fotiadi, M. Blondel, P. Megret, "Passive Q-switching in all-fiber Raman laser with distributed Rayleigh feedback," Electron. Lett. 40, 528-529 (2004).
    [CrossRef]
  7. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
    [CrossRef]
  8. I.N. DulingIII, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt. Lett. 16, 539-41 (1991).
    [CrossRef]
  9. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
    [CrossRef]
  10. A. B. Grudinin and S. Gray, "Passive harmonic mode locking in soliton fiber lasers," J. Opt. Soc. Am. B 14, 144-154 (1997).
    [CrossRef]
  11. Y. C. Zhao and S. D. Jackson, "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31,751-753 (2006).
    [CrossRef] [PubMed]
  12. D. J. Spence and R. P. Mildren, "Mode locking using stimulated Raman scattering," Opt. Express 15, 8170-8175 (2007).
    [CrossRef] [PubMed]
  13. R. Paschotta, "Comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2737-2738 (2006).
    [CrossRef] [PubMed]
  14. H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
    [CrossRef]
  15. J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007).
    [CrossRef]
  16. H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000).
    [CrossRef]
  17. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, "Multimode pumped continuous-wave solid-state Raman laser," Opt. Lett. 29, 2524-2526 (2004).
    [CrossRef] [PubMed]

2007

J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007).
[CrossRef]

D. J. Spence and R. P. Mildren, "Mode locking using stimulated Raman scattering," Opt. Express 15, 8170-8175 (2007).
[CrossRef] [PubMed]

2006

2005

F. Z. Qamar and T.A. King, "Self pulsations and self Q-switching in Ho3+, Pr3+:ZBLAN fiber lasers at 2.87 μm," Appl. Phys. B 81, 821-826 (2005).
[CrossRef]

2004

G. Ravet, A. A. Fotiadi, M. Blondel, P. Megret, "Passive Q-switching in all-fiber Raman laser with distributed Rayleigh feedback," Electron. Lett. 40, 528-529 (2004).
[CrossRef]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, "Multimode pumped continuous-wave solid-state Raman laser," Opt. Lett. 29, 2524-2526 (2004).
[CrossRef] [PubMed]

2000

H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000).
[CrossRef]

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, "Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser," Opt. Commun. 186, 311-317 (2000).
[CrossRef]

1997

1993

D. Marcuse, "Pulsing behavior of a three-level laser with saturable absorber," IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[CrossRef]

1991

Appl. Phys. B

F. Z. Qamar and T.A. King, "Self pulsations and self Q-switching in Ho3+, Pr3+:ZBLAN fiber lasers at 2.87 μm," Appl. Phys. B 81, 821-826 (2005).
[CrossRef]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Electron. Lett.

G. Ravet, A. A. Fotiadi, M. Blondel, P. Megret, "Passive Q-switching in all-fiber Raman laser with distributed Rayleigh feedback," Electron. Lett. 40, 528-529 (2004).
[CrossRef]

IEEE J. Quantum Electron.

D. Marcuse, "Pulsing behavior of a three-level laser with saturable absorber," IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[CrossRef]

H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, "Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser," Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Norman and M. Verkas, "Fiber Lasers Prove Attractive for Industrial Applications," Laser Focus World, August 2007 (PennWell).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the two laser configurations that are presented and discussed. Cavity I comprised a 14.6 m section of Yb gain fiber coupled to 100 m section of Ge Raman-shifting fiber. Cavity II included an additional 285 m length of passive fiber, so that the Raman-shifting fiber occupied only a quarter of the cavity. Both lasers were pumped from the left hand side through a dichroic mirror that was highly reflecting at all laser wavelengths and highly transmitting at the pump wavelength. The laser output was coupled out on the right hand side, the output coupler formed by a uncoated cleaved facet.

Fig. 2.
Fig. 2.

(a). Output power of the laser at the fundamental (black), 1st Stokes (red) and 2nd Stokes (blue) wavelengths as a function of the absorbed pump power. The laser spontaneously mode locks above the Stokes threshold, with the repetition rate (grey, right axis) decreasing slightly with increasing pump power. (b) Spectral content of the laser output averaged over 1 ms, measured with an absorbed pump power of 6.3 W.

Fig. 3.
Fig. 3.

Output pulse trains for Cavity I for a pump power of 5.6 W (a) and 6.3 W (b) at the fundamental (black), Stokes (red) and second Stokes (blue) wavelengths. The round trip time of the laser cavity was 1.142 microseconds.

Fig. 4.
Fig. 4.

The output pulse train predicted by the numerical model, showing the fundamental (black) and the Stokes (red) predicted output pulse train. The round trip time of the laser cavity was 1.142 microseconds.

Fig. 5.
Fig. 5.

Plots (a) and (b) show for two sequential round trips the values of the fundamental and Stokes cavity field at the output coupler. Plot (c) shows the gain for the fundamental field for each segment of the cavity field owing to the four processes acting on that field.

Fig. 6.
Fig. 6.

Schematic diagram showing the interaction of a Stokes pulse (S) with a leading (F1) and a trailing (F2) fundamental pulse. (a) I and II show the backward interactions of these pulses at each end of the resonator. (b) Time A illustrates the collision between F1 and the counter-propagating S, just before S reaches the output coupler. Time B illustrates the collision between F2 and the counter-propagating S, just after S reaches the output coupler. It is during these collisions that the fundamental pulses experience loss due to backwards SRS; since S is far smaller at time B compared to time A, pulse F2 experiences a smaller loss than F1.

Fig. 7.
Fig. 7.

Experimental (a) and numerical simulation (b) of the output pulse trains for Cavity II for a pump power of 7 W at the fundamental (black) and Stokes (red) wavelengths. The round trip time of the laser cavity is 3.93 microseconds. There were now two pulses circulating in the cavity at each wavelength, with the inter-pulse period just over half the nominal round trip time. The numerical model also revealed a second stable mode of operation (c) with one lengthened pulse within the cavity at each wavelength.

Tables (1)

Tables Icon

Table 1. Input parameters for the model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N t = P in A Yb ћ ω p N τ σ L N A Yb ћ [ ( P f + + P f ) ω f + f s ( P s + + P s ) ω s + f ss ( P ss + + P ss ) ω ss ]
n c P f ± t ± P f ± z = σ L N P f ± σ R A Ge ( P s + + P s ) P f ± ω f ω s α P f ± β ( P f + P f ) + γ N
n c P s ± t ± P s ± z = f s σ L NP s ± + σ R A Ge ( P f + + P f ) P s ± σ R A Ge ( P ss + + P ss ) P s ± ω s ω ss α P s ± β ( P s + P s ) + f s γ N
n c P ss ± t ± P ss ± z = f ss σ L NP s ± + σ R A Ge ( P s + + P s ) P ss ± α P ss ± β ( P ss + P ss ) + f ss γ N
P + ( 0 , t ) = P ( 0 , t ) P ( L , t ) = RP + ( L , t )

Metrics