Abstract

We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass-production compatible offering large-scale parallel fabrication of plasmonic components, is developed. Using scanning near-field optical imaging at the wavelengths in the range of 1.43–1.52 µm, we demonstrate low-loss (propagation length ~120 µm) and well-confined (mode width ≅1.3 µm) wedge plasmon-polariton guiding along triangular 6-µm-high and 70.5°-angle gold wedges. Experimental observations are consistent with numerical simulations performed with the multiple multipole and finite difference time domain methods.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, Berlin1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  4. R. Charbonneau, P. Berini, E. Berolo, and Ewa Lisicka-Skrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
    [CrossRef]
  5. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
    [CrossRef]
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
    [CrossRef] [PubMed]
  8. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [CrossRef]
  9. D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
    [CrossRef]
  10. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403-1–13 (2002).
    [CrossRef]
  11. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 86, 6323–6325 (2004).
    [CrossRef]
  12. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
    [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
    [CrossRef] [PubMed]
  14. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  15. L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).
    [CrossRef]
  16. A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
    [CrossRef]
  17. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
    [CrossRef]
  18. E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
    [CrossRef] [PubMed]
  19. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
    [CrossRef] [PubMed]
  20. T. Yatsuia, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
    [CrossRef]
  21. I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
    [CrossRef]
  22. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
    [CrossRef] [PubMed]
  23. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
    [CrossRef] [PubMed]

2008 (1)

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

2007 (2)

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
[CrossRef] [PubMed]

2006 (2)

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

2005 (6)

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

2004 (1)

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 86, 6323–6325 (2004).
[CrossRef]

2003 (2)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403-1–13 (2002).
[CrossRef]

2001 (2)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

T. Yatsuia, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[CrossRef]

2000 (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and Ewa Lisicka-Skrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[CrossRef]

1997 (1)

1981 (1)

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

1972 (1)

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).
[CrossRef]

Aers, G. C.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and Ewa Lisicka-Skrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[CrossRef]

Berolo, E.

Boardman, A. D.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Boltasseva, Alexandra

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Borrisé, X.

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, Sergey I.

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

Chandran, A.

Charbonneau, R.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Dobrzynski, L.

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Fernandez-Cuesta, I.

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
[CrossRef] [PubMed]

Fukui, M.

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 86, 6323–6325 (2004).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

Kobayashi, T.

Kourogi, M.

T. Yatsuia, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Kristensen, Anders

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Kristensen, M.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Leitner, A.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Lisicka-Skrzek, Ewa

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403-1–13 (2002).
[CrossRef]

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).
[CrossRef]

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

Morimoto, A.

Nielsen, R. B.

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403-1–13 (2002).
[CrossRef]

Ogawa, S.

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

Ohtsu, M.

T. Yatsuia, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

Pérez-Murano, F.

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 86, 6323–6325 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer, Berlin1988).

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Takahara, J.

Taki, H.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Teshima, R.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Yamagishi, S.

Yamaguchi, K.

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

Yatsuia, T.

T. Yatsuia, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[CrossRef]

Zia, R.

Appl. Phys. Lett. (6)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114-1–3 (2005).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 86, 6323–6325 (2004).
[CrossRef]

T. Yatsuia, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106-1–3 (2005).
[CrossRef]

J. Vacuum Sci. Technol. B (1)

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, “V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vacuum Sci. Technol. B 25, 2649–2653 (2007).
[CrossRef]

Nano Letters (1)

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Letters 7, 2341–2345 (2007).
[CrossRef] [PubMed]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Lett. (4)

Optics Letters (1)

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Optics Letters 31, 3447–3449 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (4)

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a dielectric wedge,” Phys. Rev. B 6, 3810–3815 (1972).
[CrossRef]

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403-1–13 (2002).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403–257404 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802-1–4 (2005).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, Sergey I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons,” Phys. Rev. Lett. 100, 023901-1–4 (2008).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons (Springer, Berlin1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the fabrication steps: (1) a silicon wafer is covered with a layer of silicon oxide and photoresist, (2) resist is exposed and developed, and the pattern is transferred into the oxide, (3) V-grooves are etches in silicon, (4) gold is deposited after oxide removal, (5) nickel is deposited, (6) silicon substrate is dissolved leaving gold 70.5°-wedges.

Fig. 2.
Fig. 2.

Scanning electron microscope image of (a) 8.5-µm-wide, 6-µm-high gold wedge waveguides together with (b,c) close-ups of the fabricated wedges (b - wavy edge at the lower end is due to charging effects). Marks and facet defects are due to rough sawing of the metal.

Fig. 3.
Fig. 3.

Pseudo-color (a) topographical and (b, c) near-field optical images taken with the Λ-wedge illuminated with TM-polarized light at λ≅(b) 1440, and (c) 1500 nm (the WPP propagates rightwards). The image size: 32×10 µm2. (d) Cross sections of the topographical (stars) and near-field optical (filled and open circles) images of Fig. 3(a) and 3(c) averaged along 10 lines along the propagation direction or perpendicular to it. The exponential dependence fitted by the least-square method to the signal dependence along the propagation direction is also shown.

Fig. 4.
Fig. 4.

Pseudo-color (a) topographical and (b) near-field optical images taken with the Λ-wedge illuminated with TE-polarized light at λ≅(b) 1500 nm (the SPP propagates upwards). The image size: 18×32 µm2. (c) Cross sections of the topographical (stars) and near-field optical (filled circles) images of Fig. 4(a) and 4(b) averaged along 10 lines along the propagation direction or perpendicular to it.

Fig. 5.
Fig. 5.

Transverse electric field of the WPP mode at λ=1.5 µm for the curvature radius r=(a) 10 and (b) 100 nm. (c) Mode size (circles) and propagation length (triangles) of WPP mode as a function of the radius curvature (solid lines represent spline-interpolation).

Metrics