Abstract

We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass-production compatible offering large-scale parallel fabrication of plasmonic components, is developed. Using scanning near-field optical imaging at the wavelengths in the range of 1.43–1.52 µm, we demonstrate low-loss (propagation length ~120 µm) and well-confined (mode width ≅1.3 µm) wedge plasmon-polariton guiding along triangular 6-µm-high and 70.5°-angle gold wedges. Experimental observations are consistent with numerical simulations performed with the multiple multipole and finite difference time domain methods.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, Berlin 1988).
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
    [CrossRef]
  4. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  5. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
    [CrossRef]
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403-4 (2005).
    [CrossRef] [PubMed]
  8. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  9. D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett.  87, 261114-1-3 (2005).
    [CrossRef]
  10. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403-1-13 (2002).
    [CrossRef]
  11. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 86, 6323-6325 (2004).
    [CrossRef]
  12. D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186-1188 (2005).
    [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett.  95, 046802-1-4 (2005).
    [CrossRef] [PubMed]
  14. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  15. L. Dobrzynski and A. A. Maradudin, "Electrostatic edge modes in a dielectric wedge," Phys. Rev. B 6, 3810-3815 (1972).
    [CrossRef]
  16. A. D. Boardman, G. C. Aers, and R. Teshima, "Retarded edge modes of a parabolic wedge," Phys. Rev. B 24, 5703-5712 (1981).
    [CrossRef]
  17. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett.  87, 061106-1-3 (2005).
    [CrossRef]
  18. E. Moreno, S. G. Rodrigo, SergeyI.  Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons," Phys. Rev. Lett. 100, 023901-1-4 (2008).
    [CrossRef] [PubMed]
  19. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and SergeyI. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
    [CrossRef] [PubMed]
  20. T. Yatsuia, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
    [CrossRef]
  21. I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, "V-groove plasmonic waveguides fabricated by nanoimprint lithography," J. Vacuum Sci. Technol. B 25, 2649-2653 (2007).
    [CrossRef]
  22. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, M. Kristensen, "Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides," Nano Lett. 7, 2341-2345 (2007).
    [CrossRef] [PubMed]
  23. R. Zia, A. Chandran, and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005).
    [CrossRef] [PubMed]

2007

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, "V-groove plasmonic waveguides fabricated by nanoimprint lithography," J. Vacuum Sci. Technol. B 25, 2649-2653 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, M. Kristensen, "Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides," Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and SergeyI. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

2005

2004

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 86, 6323-6325 (2004).
[CrossRef]

2003

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2001

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

T. Yatsuia, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

2000

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
[CrossRef]

1997

1981

A. D. Boardman, G. C. Aers, and R. Teshima, "Retarded edge modes of a parabolic wedge," Phys. Rev. B 24, 5703-5712 (1981).
[CrossRef]

1972

L. Dobrzynski and A. A. Maradudin, "Electrostatic edge modes in a dielectric wedge," Phys. Rev. B 6, 3810-3815 (1972).
[CrossRef]

Appl. Phys. Lett.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

T. Yatsuia, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 86, 6323-6325 (2004).
[CrossRef]

J. Vacuum Sci. Technol. B

I. Fernandez-Cuesta, R. B. Nielsen, Alexandra Boltasseva, X. Borrisé, F. Pérez-Murano, and Anders Kristensen, "V-groove plasmonic waveguides fabricated by nanoimprint lithography," J. Vacuum Sci. Technol. B 25, 2649-2653 (2007).
[CrossRef]

Nano Letters

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, M. Kristensen, "Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides," Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Optics Letters

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and SergeyI. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

L. Dobrzynski and A. A. Maradudin, "Electrostatic edge modes in a dielectric wedge," Phys. Rev. B 6, 3810-3815 (1972).
[CrossRef]

A. D. Boardman, G. C. Aers, and R. Teshima, "Retarded edge modes of a parabolic wedge," Phys. Rev. B 24, 5703-5712 (1981).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

Phys. Rev. Lett.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403-4 (2005).
[CrossRef] [PubMed]

Other

D. F. P. Pile, S. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett.  87, 261114-1-3 (2005).
[CrossRef]

I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403-1-13 (2002).
[CrossRef]

H. Raether, Surface Plasmons (Springer, Berlin 1988).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett.  87, 061106-1-3 (2005).
[CrossRef]

E. Moreno, S. G. Rodrigo, SergeyI.  Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon-polaritons," Phys. Rev. Lett. 100, 023901-1-4 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett.  95, 046802-1-4 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the fabrication steps: (1) a silicon wafer is covered with a layer of silicon oxide and photoresist, (2) resist is exposed and developed, and the pattern is transferred into the oxide, (3) V-grooves are etches in silicon, (4) gold is deposited after oxide removal, (5) nickel is deposited, (6) silicon substrate is dissolved leaving gold 70.5°-wedges.

Fig. 2.
Fig. 2.

Scanning electron microscope image of (a) 8.5-µm-wide, 6-µm-high gold wedge waveguides together with (b,c) close-ups of the fabricated wedges (b - wavy edge at the lower end is due to charging effects). Marks and facet defects are due to rough sawing of the metal.

Fig. 3.
Fig. 3.

Pseudo-color (a) topographical and (b, c) near-field optical images taken with the Λ-wedge illuminated with TM-polarized light at λ≅(b) 1440, and (c) 1500 nm (the WPP propagates rightwards). The image size: 32×10 µm2. (d) Cross sections of the topographical (stars) and near-field optical (filled and open circles) images of Fig. 3(a) and 3(c) averaged along 10 lines along the propagation direction or perpendicular to it. The exponential dependence fitted by the least-square method to the signal dependence along the propagation direction is also shown.

Fig. 4.
Fig. 4.

Pseudo-color (a) topographical and (b) near-field optical images taken with the Λ-wedge illuminated with TE-polarized light at λ≅(b) 1500 nm (the SPP propagates upwards). The image size: 18×32 µm2. (c) Cross sections of the topographical (stars) and near-field optical (filled circles) images of Fig. 4(a) and 4(b) averaged along 10 lines along the propagation direction or perpendicular to it.

Fig. 5.
Fig. 5.

Transverse electric field of the WPP mode at λ=1.5 µm for the curvature radius r=(a) 10 and (b) 100 nm. (c) Mode size (circles) and propagation length (triangles) of WPP mode as a function of the radius curvature (solid lines represent spline-interpolation).

Metrics