Abstract

Optical properties of Yb:Y3Sc2Al3O12 crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y3Sc2Al3O12 show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y3Sc2Al3O12 lasers with Cr4+:YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 µJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr4+:YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y3Sc2Al2O12 microchip lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. F. Krupke, "Ytterbium solid-state lasers - The first decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287 - 1296 (2000).
    [CrossRef]
  2. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006).
    [CrossRef]
  3. C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, 3 - 17 (1999).
    [CrossRef]
  4. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089 - 1091 (1991).
    [CrossRef] [PubMed]
  5. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, "Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm," Opt. Lett. 20, 713 - 715 (1995).
    [CrossRef] [PubMed]
  6. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, "Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 100 - 104 (1997).
    [CrossRef]
  7. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers " IEEE J. Sel. Top. Quantum Electron. 3, 105 - 116 (1997).
    [CrossRef]
  8. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP 42, 440 - 446 (1976).
  9. T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, "Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12," Phys. Rev. B 41, 21 - 30 (1990).
    [CrossRef]
  10. Y. Sato, T. Taira, and A. Ikesue, "Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12," Jpn. J. Appl. Phys. 42 (2003).
  11. M. Kokta, "Solubility enhancement of Nd3+ in scandium-substituted rare earth-aluminum garnets," J. Solid State Chem. 8, 39 -42 (1973).
    [CrossRef]
  12. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin Heidelberg New York, 1981).
  13. A. A. Kaminskii, and L. Li, "Analysis of spectral line intensities of TR3+ ions in disordered crystal systems," Phys. Status Solidi(a) 26, K21 - K26 (1974).
    [CrossRef]
  14. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals," Phys. Status Solidi(a) 202, 2565 - 2573 (2005).
    [CrossRef]
  15. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, "Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics," Appl. Phys. Lett. 85, 1898 -1900 (2004).
    [CrossRef]
  16. J. Saikawa, Y. Sato, and T. Taira, "Passively mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser," Appl. Phys. Lett. 85, 5845 - 5847 (2004).
    [CrossRef]
  17. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet," J. Opt. Soc. Am. B 20, 1975 - 1979 (2003).
    [CrossRef]
  18. S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, "Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12," Appl. phys. B 58, 153 - 156 (1994).
    [CrossRef]
  19. D. S. Sumida, and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media " Opt. Lett. 19, 1343 - 1345 (1994).
    [CrossRef] [PubMed]
  20. F. Salin, and J. Squier, "Gain guiding in solid-state lasers," Opt. Lett. 17, 1352 - 1354 (1992).
    [CrossRef] [PubMed]
  21. E. J. Grace, G. H. C. New, and P. M. W. French, "Simple ABCD matrix treatment for transversely varying saturable gain," Opt. Lett. 26, 1776 - 1778 (2001).
    [CrossRef]
  22. J. K. Jabczynski, J. Kwiatkowski, and W. Zendzian, "Modeling of beam width in passively Q-switched end-pumped lasers," Opt. Express 11, 552 - 559 (2003).
    [PubMed]
  23. J. Dong, and K. Ueda, "Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser," Phys. Rev. A 73, 053824 (2006).
    [CrossRef]
  24. J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890 - 1901 (1995).
    [CrossRef]
  25. J. Dong, A. Shirakawa, and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006).
    [CrossRef]
  26. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  27. W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412 -1423 (1988).
    [CrossRef]

2006 (3)

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006).
[CrossRef]

J. Dong, and K. Ueda, "Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser," Phys. Rev. A 73, 053824 (2006).
[CrossRef]

J. Dong, A. Shirakawa, and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006).
[CrossRef]

2005 (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals," Phys. Status Solidi(a) 202, 2565 - 2573 (2005).
[CrossRef]

2004 (2)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, "Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics," Appl. Phys. Lett. 85, 1898 -1900 (2004).
[CrossRef]

J. Saikawa, Y. Sato, and T. Taira, "Passively mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser," Appl. Phys. Lett. 85, 5845 - 5847 (2004).
[CrossRef]

2003 (3)

2001 (1)

2000 (1)

W. F. Krupke, "Ytterbium solid-state lasers - The first decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287 - 1296 (2000).
[CrossRef]

1999 (1)

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, 3 - 17 (1999).
[CrossRef]

1997 (2)

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, "Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 100 - 104 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers " IEEE J. Sel. Top. Quantum Electron. 3, 105 - 116 (1997).
[CrossRef]

1995 (2)

1994 (2)

S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, "Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12," Appl. phys. B 58, 153 - 156 (1994).
[CrossRef]

D. S. Sumida, and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media " Opt. Lett. 19, 1343 - 1345 (1994).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

1990 (1)

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, "Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12," Phys. Rev. B 41, 21 - 30 (1990).
[CrossRef]

1988 (1)

1976 (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP 42, 440 - 446 (1976).

1974 (1)

A. A. Kaminskii, and L. Li, "Analysis of spectral line intensities of TR3+ ions in disordered crystal systems," Phys. Status Solidi(a) 26, K21 - K26 (1974).
[CrossRef]

1973 (1)

M. Kokta, "Solubility enhancement of Nd3+ in scandium-substituted rare earth-aluminum garnets," J. Solid State Chem. 8, 39 -42 (1973).
[CrossRef]

Appl. Phys. B (1)

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, 3 - 17 (1999).
[CrossRef]

S. Kuck, K. Petermann, U. Pohlmann, U. Schonhoff, and G. Huber, "Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12," Appl. phys. B 58, 153 - 156 (1994).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

J. Dong, A. Shirakawa, and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, "Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics," Appl. Phys. Lett. 85, 1898 -1900 (2004).
[CrossRef]

J. Saikawa, Y. Sato, and T. Taira, "Passively mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser," Appl. Phys. Lett. 85, 5845 - 5847 (2004).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890 - 1901 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W. F. Krupke, "Ytterbium solid-state lasers - The first decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287 - 1296 (2000).
[CrossRef]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, "Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment," IEEE J. Sel. Top. Quantum Electron. 3, 100 - 104 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers " IEEE J. Sel. Top. Quantum Electron. 3, 105 - 116 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Solid State Chem. (1)

M. Kokta, "Solubility enhancement of Nd3+ in scandium-substituted rare earth-aluminum garnets," J. Solid State Chem. 8, 39 -42 (1973).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Sato, T. Taira, and A. Ikesue, "Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12," Jpn. J. Appl. Phys. 42 (2003).

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

J. Dong, and K. Ueda, "Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser," Phys. Rev. A 73, 053824 (2006).
[CrossRef]

Phys. Rev. B (1)

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, "Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12," Phys. Rev. B 41, 21 - 30 (1990).
[CrossRef]

Phys. Status Solidi (2)

A. A. Kaminskii, and L. Li, "Analysis of spectral line intensities of TR3+ ions in disordered crystal systems," Phys. Status Solidi(a) 26, K21 - K26 (1974).
[CrossRef]

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals," Phys. Status Solidi(a) 202, 2565 - 2573 (2005).
[CrossRef]

Sov. Phys. JETP (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP 42, 440 - 446 (1976).

Other (2)

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin Heidelberg New York, 1981).

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Absorption spectrum of Yb:YSAG crystals doped with 5 at.% Yb3+-ions at room temperature, the absorption spectrum of Yb:YAG doped with 5 at.% Yb3+-ions is also plotted for comparison.

Fig. 2.
Fig. 2.

Emission spectrum of Yb:YSAG crystals doped with 5 at.% Yb3+-ions at room temperature. The emission spectrum of Yb:YAG crystal is shown for comparison.

Fig. 3.
Fig. 3.

Gain cross-section, σg (λ) of Yb:YSAG crystals for different values of population inversion rate, β=N2 /N0 . σg (λ)=β σe (λ)-(1-β)σa (λ). σe (λ) and σa (λ) are the emission and absorption cross-section of Yb:YSAG crystals, respectively. Absorption cross-section spectrum was obtained when β was set to 0; emission cross-section spectrum was obtained when β was set to 1.

Fig. 4.
Fig. 4.

Schematic diagram for laser-diode end-pumped continuous-wave and passively Q-switched Yb:YSAG microchip lasers with Cr4+:YAG as saturable absorber.

Fig. 5.
Fig. 5.

Continuous-wave output power of Yb:YSAG microchip lasers as a function of absorbed pump power under different output couplings (Toc =5 and 10%) and average output power as a function of the absorbed pump power for passively Q-switched Yb:YSAG microchip lasers with Cr4+:YAG as saturable absorber.

Fig. 6.
Fig. 6.

Stimulated emission spectra for different pump powers in continuous-wave and passively Q-switched Yb:YSAG microchip lasers with Cr4+:YAG as the saturable absorber.

Fig. 7.
Fig. 7.

Some typical output pulse trains of the passively Q-switched Yb:YSAG microchip lasers with Cr4+:YAG as saturable absorber under the different pump power levels, which correspond to the stimulated emission spectra in Fig. 6.

Fig. 8.
Fig. 8.

Passively Q-switched Yb:YSAG microchip laser pulse with 2.5 ns pulse width (FWHM) and 30 µJ pulse energy, corresponding to peak power of over 12 kW.

Fig. 9.
Fig. 9.

The pulse characteristics (pulse energy, pulse width, repetition rate and peak power) of laser-diode pumped passively Q-switched Yb:YSAG microchip lasers with Cr4+:YAG as saturable absorber as a function of absorbed pump power.

Metrics