Abstract

We present a systematic study of Mach-Zehnder silicon optical modulators based on carrier-injection. Detailed comparisons between modeling and measurement results are made with good agreement obtained for both DC and AC characteristics. A figure of merit, static VπL, as low as 0.24Vmm is achieved. The effect of carrier lifetime variation with doping concentration is explored and found to be important for the modulator characteristics.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. Pavesi, D. J. Lockwood, Silicon Photonics, Topics in Applied Physics 94, (Springer, New York, 2004).
    [CrossRef]
  2. G. T. Reed, A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).
    [CrossRef]
  3. R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]
  4. C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
    [CrossRef]
  5. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  7. A. Liu, L. Liao, D. Rubin, H. Nguyen, G. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  9. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express 15, 430-436 (2007).
    [CrossRef] [PubMed]
  10. F. Gan, F. X. Kärtner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
    [CrossRef]
  11. F. Gan and F. X. Kärtner, "Low insertion Loss, high-speed silicon electro-optic modulator design," in Technical Digest of Integrated Photonics Research and Applications/ Nanophotonics, ITuB2, (2006).
  12. S. J. Spector, M. E. Grein, R. T. Schulein, M. W. Geis, J. U. Yoon, D. E. Lennon, F. Gan, F. X. Kartner, and T. M. Lyszczarz, "Compact carrier injection based Mach-Zehnder modulator in silicon," in Technical Digest of 2007 Integrated Photonics Research, ITuE5 (2007).
  13. F. X. Kärtner,  et al., "Silicon electronic photonic integrated circuits for high speed analog to digital conversion," (Invited) in Technical Digiest of 3rd International Conference on Group IV Photonics, ThC3, (2006).
    [PubMed]
  14. S. L. Chuang, Physics of Optoelectronic Devices. (John Wiley, New York, 1995).
  15. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996), Part IIA.
  16. S. M. Sze, Physics of Semiconductor Devices, (John Wiley, New York, 1981), Chap. 2.
  17. D. J. Roulston, N. D. Arora, and S. G. Chamberlain, "Modeling and measurement of minority-carrier lifetimes versus doping in diffused layers of n+-p silicon diodes," IEEE Trans. Electron Devices 29, 961-964 (1982).
    [CrossRef]
  18. D. W. Zheng, B. T. Smith, M. Asghari, "Assessment of the effective carrier lifetime in a SOI p-i-n diode silicon modulator using the reverse recovery method," Proc. SPIE 6477, 647711 (2007).
    [CrossRef]

2007

2005

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

F. Gan, F. X. Kärtner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

1995

C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

1987

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

1982

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, "Modeling and measurement of minority-carrier lifetimes versus doping in diffused layers of n+-p silicon diodes," IEEE Trans. Electron Devices 29, 961-964 (1982).
[CrossRef]

Electron. Lett.

C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Gan, F. X. Kärtner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

IEEE Trans. Electron Devices

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, "Modeling and measurement of minority-carrier lifetimes versus doping in diffused layers of n+-p silicon diodes," IEEE Trans. Electron Devices 29, 961-964 (1982).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express

Proc. of SPIE

D. W. Zheng, B. T. Smith, M. Asghari, "Assessment of the effective carrier lifetime in a SOI p-i-n diode silicon modulator using the reverse recovery method," Proc. SPIE 6477, 647711 (2007).
[CrossRef]

Other

L. Pavesi, D. J. Lockwood, Silicon Photonics, Topics in Applied Physics 94, (Springer, New York, 2004).
[CrossRef]

G. T. Reed, A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).
[CrossRef]

F. Gan and F. X. Kärtner, "Low insertion Loss, high-speed silicon electro-optic modulator design," in Technical Digest of Integrated Photonics Research and Applications/ Nanophotonics, ITuB2, (2006).

S. J. Spector, M. E. Grein, R. T. Schulein, M. W. Geis, J. U. Yoon, D. E. Lennon, F. Gan, F. X. Kartner, and T. M. Lyszczarz, "Compact carrier injection based Mach-Zehnder modulator in silicon," in Technical Digest of 2007 Integrated Photonics Research, ITuE5 (2007).

F. X. Kärtner,  et al., "Silicon electronic photonic integrated circuits for high speed analog to digital conversion," (Invited) in Technical Digiest of 3rd International Conference on Group IV Photonics, ThC3, (2006).
[PubMed]

S. L. Chuang, Physics of Optoelectronic Devices. (John Wiley, New York, 1995).

R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996), Part IIA.

S. M. Sze, Physics of Semiconductor Devices, (John Wiley, New York, 1981), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Top-view of Mach-Zehnder interferometer silicon modulator. (b) Schematic cross-sectional view and (c) SEM cross-sectional view of the fabricated SOI waveguide phase shifter with the inset shown as a magnified view of the silicon ridge waveguide.

Fig. 2.
Fig. 2.

Modeled and measured (a) current-voltage characteristics (b) normalized optical transmission-current characteristics for a MZ silicon modulator with 0.25-mm-long phase shifters embedded on both arms.

Fig. 3.
Fig. 3.

(a). Variation of carrier lifetime as a function of effective carrier concentration and (b) Measured and fitted effective carrier lifetime vary as a function of effective carrier concentration. Measurements, (blue dots); best-fit curve to the empirical model (red) for device #1; model prediction for two additional parameter choices (green and black)..

Fig. 4.
Fig. 4.

Schematic diagram of the experimental setup for MZI silicon modulator AC frequency response measurement.

Fig. 5.
Fig. 5.

Small signal equivalent circuit of the forward biased silicon PiN diode

Fig. 6.
Fig. 6.

Modeled and measured small signal AC characteristics of the Mach-Zehnder silicon modulator with 0.5mm phase shifters.

Fig. 7.
Fig. 7.

Simulated magnitude of total AC carrier density at different frequencies for two carrier lifetime choices in Fig. 3 (the left is for lifetime #1 and the right is for lifetime #2). The 2-D carrier distribution graphs at two end frequencies are shown in insets.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Normalized S 21 2 Q u 2 = C D ( ω ) 1 + R S G D ( ω ) + j ω R S C D ( ω )
C D = G 0 2 ω ( 1 + ω 2 τ 2 1 ) 1 2 and G D = G 0 2 ( 1 + ω 2 τ 2 + 1 ) 1 2

Metrics