Abstract

We demonstrate high spectral control from surface emitting THz Quantum Cascade Lasers based on a two-dimensional photonic crystal cavity. The perforated top metallic contact acts as an in plane resonator in a tight double-metal plasmonic waveguide providing a strong optical feedback without needing three-dimensional cavity features. The optical far-field patterns do not exhibit the expected symmetry and the shape of the cavity mode. The difference is attributed to a metal surface plasmon mediated light outcoupling mechanism also responsible for the relatively low extraction efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
    [CrossRef] [PubMed]
  2. R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Lotti, and F. Rossi "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  3. L. Mahler, R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
    [CrossRef]
  4. J. A. Fan, M. A. Belkin, F. capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11672
    [CrossRef] [PubMed]
  5. S. Kumar, B. S. Williams, Q. Quin, A. W. Lee, Q. Hu, and J. L. Reno "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-1-113
    [CrossRef] [PubMed]
  6. G. Fashing, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser "Terahertz microcavity quantum cascade lasers," Appl. Phys. Lett.  87, 211112 (2005).
    [CrossRef]
  7. Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett.,  90, 091113 (2006).
    [CrossRef]
  8. B. S. Song, S. Noda, T, Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Maters. 4, 207-210 (2005).
    [CrossRef]
  9. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically Driven Single-Cell Photonic Crystral Laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  10. I , Vurgaftman and J. R. Meyer, "Photonic-Crystal Distributed-Feedback Quantum Cascade Lasers" IEEE J. Quantum Electron.  38, 592-602 (2002).
    [CrossRef]
  11. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, "Surface-emitting photonic crystal distributed-feedback laser for the midinfrared," Appl. Phys. Lett. 88, 191105 (2006).
    [CrossRef]
  12. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdr’e, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler and J. Faist, "Design, Fabrication and Optical Characterisation of Quantum Cascade Lasers at Terahertz Frequencies using Photonic Crystal Reflectors," Opt. Express 13, 8960-8968 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8960
    [CrossRef] [PubMed]
  13. A. Benz, G. Fasching, C. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser "Terahertz photonic crystal resonators in double-metal waveguides," Opt. Express 15, 12418-12424 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12418
    [CrossRef] [PubMed]
  14. H. Zhang, L. A. Dunbar, G. Scalari, R. Houdre, and J. Faist "Terahertz photonic crystal quantum cascade lasers," Opt. Express 15, 16818-16827 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16818
    [CrossRef] [PubMed]
  15. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
    [CrossRef] [PubMed]
  16. G. Scalari, L. Sirigu, R. Terazzi, C. Walther, M. I. Amanti, M. Giovannini, N. Hoyler, J. Faist, M. L. Sadowski, H. Beere, D. Ritchie, L. A. Dunbar, R. Houdre "Multi-wavelength operation and vertical emission in THz quantumcascade lasers" J. Appl. Phys. 101, 081726 (2007).
    [CrossRef]
  17. S. Johnson and J. Joannopoulos "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  18. G. Scalari, N. Hoyler, M. Giovannini, and J. Faist "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101-3 (2005).
    [CrossRef]
  19. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter "Optical-fiber-based measurements of ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
    [CrossRef]

2007 (4)

2006 (3)

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, "Surface-emitting photonic crystal distributed-feedback laser for the midinfrared," Appl. Phys. Lett. 88, 191105 (2006).
[CrossRef]

J. A. Fan, M. A. Belkin, F. capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11672
[CrossRef] [PubMed]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett.,  90, 091113 (2006).
[CrossRef]

2005 (4)

B. S. Song, S. Noda, T, Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Maters. 4, 207-210 (2005).
[CrossRef]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdr’e, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler and J. Faist, "Design, Fabrication and Optical Characterisation of Quantum Cascade Lasers at Terahertz Frequencies using Photonic Crystal Reflectors," Opt. Express 13, 8960-8968 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8960
[CrossRef] [PubMed]

G. Fashing, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser "Terahertz microcavity quantum cascade lasers," Appl. Phys. Lett.  87, 211112 (2005).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101-3 (2005).
[CrossRef]

2004 (3)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter "Optical-fiber-based measurements of ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically Driven Single-Cell Photonic Crystral Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

L. Mahler, R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

2003 (1)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

2002 (2)

R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Lotti, and F. Rossi "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

I , Vurgaftman and J. R. Meyer, "Photonic-Crystal Distributed-Feedback Quantum Cascade Lasers" IEEE J. Quantum Electron.  38, 592-602 (2002).
[CrossRef]

2001 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

L. Mahler, R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004).
[CrossRef]

G. Fashing, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser "Terahertz microcavity quantum cascade lasers," Appl. Phys. Lett.  87, 211112 (2005).
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett.,  90, 091113 (2006).
[CrossRef]

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, "Surface-emitting photonic crystal distributed-feedback laser for the midinfrared," Appl. Phys. Lett. 88, 191105 (2006).
[CrossRef]

G. Scalari, N. Hoyler, M. Giovannini, and J. Faist "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101-3 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

I , Vurgaftman and J. R. Meyer, "Photonic-Crystal Distributed-Feedback Quantum Cascade Lasers" IEEE J. Quantum Electron.  38, 592-602 (2002).
[CrossRef]

J. Appl. Phys. (1)

G. Scalari, L. Sirigu, R. Terazzi, C. Walther, M. I. Amanti, M. Giovannini, N. Hoyler, J. Faist, M. L. Sadowski, H. Beere, D. Ritchie, L. A. Dunbar, R. Houdre "Multi-wavelength operation and vertical emission in THz quantumcascade lasers" J. Appl. Phys. 101, 081726 (2007).
[CrossRef]

Nature (1)

R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Richie, R. C. Lotti, and F. Rossi "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Nature Materials (1)

B. S. Song, S. Noda, T, Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Maters. 4, 207-210 (2005).
[CrossRef]

Opt. Express (6)

J. A. Fan, M. A. Belkin, F. capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11672
[CrossRef] [PubMed]

S. Kumar, B. S. Williams, Q. Quin, A. W. Lee, Q. Hu, and J. L. Reno "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-1-113
[CrossRef] [PubMed]

S. Johnson and J. Joannopoulos "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdr’e, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler and J. Faist, "Design, Fabrication and Optical Characterisation of Quantum Cascade Lasers at Terahertz Frequencies using Photonic Crystal Reflectors," Opt. Express 13, 8960-8968 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8960
[CrossRef] [PubMed]

A. Benz, G. Fasching, C. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser "Terahertz photonic crystal resonators in double-metal waveguides," Opt. Express 15, 12418-12424 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12418
[CrossRef] [PubMed]

H. Zhang, L. A. Dunbar, G. Scalari, R. Houdre, and J. Faist "Terahertz photonic crystal quantum cascade lasers," Opt. Express 15, 16818-16827 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16818
[CrossRef] [PubMed]

Phys. Rev. B (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter "Optical-fiber-based measurements of ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Science (3)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically Driven Single-Cell Photonic Crystral Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Optical microscope image of a 2D PhC-based THz QCL. In the zoom area a scanning electron microscope detail of the PhC openings is shown.

Fig. 2.
Fig. 2.

(a) TM photon band diagram of a triangular lattice of holes along the ΓMKΓ path up to the 10 th band. The shaded blue region represents the light cone in air, whereas the horizontal gray band shows the energy range covered by the laser emission of our samples. (b) Two-dimensional simulation from a half-ridge structure composed by a bottom metallic layer, an active region with n eff =3.7, and air for the TM-polarized mode. The simulation was performed in order to assign the effective index of the mode taking into account the hole part of the device. An effective index n eff =2.21 was found.

Fig. 3.
Fig. 3.

Output optical peak power vs injected current curves taken at different temperatures. Lasing action was observed up to 95 K. The relatively high operating voltages are probably due to a double Schottky interface formed by the double metal waveguide metallic layer sequence.

Fig. 4.
Fig. 4.

(a) Optical spectra recorded from a series of five different devices with different PhC parameters at about the same applied bias (13.8 V). Most of the lasers show a single mode behavior and a progressive red shift tuning is observed by increasing the PhC lattice period. (b) Reference sub-threshold electro-luminescence spectrum obtained from a THz QCL based on the same active region and processed in a standard ridge waveguide configuration. The quality of the spectrum is limited by thermal noise due to the high doping levels (and high injected currents) of the active region. The measurements were performed at 7 K.

Fig. 5.
Fig. 5.

(a) Optical spectra, as shown in Fig.4, plotted in reduced energy units. (b) Photonic band dispersion calculated for r=3µm, and a=22µm.

Fig. 6.
Fig. 6.

(a) Spectral evolution, as a function of the applied bias voltage, plotted in reduced energy units from three different devices with lattice parameters “a” being respectively 20, 21, and 22 µm. The measurements were performed at 7 K. (b) Photonic band dispersion as in Fig.2.

Fig. 7.
Fig. 7.

Integrated spectral emission vs injected current plot at 7 K. A nonlinear increase of the lasing emission is observed when the spectrum shifts from a “M-emission” to a “Γ”-emission.

Fig. 8.
Fig. 8.

Far-field emission patterns recorded from a device with a=21µm and r=3 µm at (a) V=13.1 V and (b) V=15.6 V corresponding to lasing emission attributed respectively to the M-point and the Γ-point of the PhC resonator. The (0;0) position corresponds approximately to the center of the hexagonal lattice of the laser sample. The measurements were performed at 20 K.

Fig. 9.
Fig. 9.

(a) LIV curves of a deeply etched PhC laser with r/a=0.136 (a=22 µm and r=3 µm). (b) Corresponding optical spectra evolution recorded at different bias voltages at 7 K.

Fig. 10.
Fig. 10.

Far-field emission pattern from the deeply etched PhC laser described above at a bias voltage V=15 V (Γ-lasing). Also here the (0;0) position corresponds approximately to the center of the hexagonal lattice of the laser sample. The measurements were performed at 20 K.

Metrics