Abstract

We demonstrate lasing action with a high spontaneous emission factor and temperature insensitivity in InAs/InGaAs quantum dots (QD) embedded in photonic crystal nanocavities. A quality factor (Q) of over 10,000 was achieved by suppressing the material absorption by QDs uncoupled to the cavity mode. High Q cavities exhibited ultra low threshold lasing with a spontaneous emission factor of 0.7. Less frequent carrier escape from the QDs, which was primarily favored by high potential barrier energy, enabled low threshold lasing up to 90 K.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, "Coherence properties of high-β elliptical semiconductor micropillar lasers," Appl. Phys. Lett. 90, 161111 (2007).
    [CrossRef]
  2. Y.-R. Nowicki-Bringuier, J. Claudon, C. Böckler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gérard, "High Q whispering gallery modes in GaAs/AlAs pillar microcavities," Opt. Express 15, 17291-17304 (2007).
    [CrossRef]
  3. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
    [CrossRef]
  4. K. Srinvasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Designing Photonic Crystals for Applications," in Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, Princeton, 1995).
  6. K. Sakoda, "Optical Response of photonic crystals," in Optical Properties of Photonic Crystals, (Springer, Berlin, 2001).
  7. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef]
  9. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, D.-H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," App. Phys. Lett. 76, 2982-2984 (2000).
    [CrossRef]
  10. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
    [CrossRef]
  11. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
    [CrossRef]
  12. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef]
  13. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
    [CrossRef]
  14. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
    [CrossRef]
  15. Y. Yamamoto, F. Matinaga, S. Machida, A. Karlsson, J. Jacobson, G. Björk, T. Mukai, "Quantum electrodynamic effects in semiconductor microcavities - Microlasers and coherent exciton-polariton emission," J. De Physique IV 3, 39-46 (1993).
  16. D. P. Popescu, P. G. Eliseev, A. Stintz, K. J. Malloy, "Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well," Semicond. Sci. Technol. 19, 33-38 (2004).
    [CrossRef]
  17. N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, H. Okamoto, "Charged exciton emission at 1.3 μm InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
    [CrossRef]
  18. X. Mu, Y. J. Ding, B. S. Ooi, M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006).
    [CrossRef]
  19. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
    [CrossRef]
  20. S. R. Johnson, T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," J. Appl. Phys. 78, 5609-5613 (1995).
    [CrossRef]
  21. H. Altug, J. Vučković, "Photonic crystal nanocavity array laser," Opt. Express 13, 8819-8828 (2005).
    [CrossRef]
  22. A. A. Ukhanov, A. Stintz, P. G. Eliseev, K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004).
    [CrossRef]

2007 (4)

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef]

K. Srinvasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, "Coherence properties of high-β elliptical semiconductor micropillar lasers," Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

Y.-R. Nowicki-Bringuier, J. Claudon, C. Böckler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gérard, "High Q whispering gallery modes in GaAs/AlAs pillar microcavities," Opt. Express 15, 17291-17304 (2007).
[CrossRef]

2006 (3)

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef]

X. Mu, Y. J. Ding, B. S. Ooi, M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef]

2005 (3)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, H. Okamoto, "Charged exciton emission at 1.3 μm InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

H. Altug, J. Vučković, "Photonic crystal nanocavity array laser," Opt. Express 13, 8819-8828 (2005).
[CrossRef]

2004 (3)

A. A. Ukhanov, A. Stintz, P. G. Eliseev, K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004).
[CrossRef]

D. P. Popescu, P. G. Eliseev, A. Stintz, K. J. Malloy, "Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well," Semicond. Sci. Technol. 19, 33-38 (2004).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

2002 (2)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

2000 (1)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, D.-H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," App. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef]

1995 (1)

S. R. Johnson, T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," J. Appl. Phys. 78, 5609-5613 (1995).
[CrossRef]

1993 (1)

Y. Yamamoto, F. Matinaga, S. Machida, A. Karlsson, J. Jacobson, G. Björk, T. Mukai, "Quantum electrodynamic effects in semiconductor microcavities - Microlasers and coherent exciton-polariton emission," J. De Physique IV 3, 39-46 (1993).

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

App. Phys. Lett. (1)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, D.-H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," App. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989-3991 (2004).
[CrossRef]

N. I. Cade, H. Gotoh, H. Kamada, T. Tawara, T. Sogawa, H. Nakano, H. Okamoto, "Charged exciton emission at 1.3 μm InAs quantum dots grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 87, 172101 (2005).
[CrossRef]

X. Mu, Y. J. Ding, B. S. Ooi, M. Hopkinson, "Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence," Appl. Phys. Lett. 89, 181924 (2006).
[CrossRef]

S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, "Coherence properties of high-β elliptical semiconductor micropillar lasers," Appl. Phys. Lett. 90, 161111 (2007).
[CrossRef]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004).
[CrossRef]

Electron. Lett. (1)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. R. Johnson, T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," J. Appl. Phys. 78, 5609-5613 (1995).
[CrossRef]

J. De Physique IV (1)

Y. Yamamoto, F. Matinaga, S. Machida, A. Karlsson, J. Jacobson, G. Björk, T. Mukai, "Quantum electrodynamic effects in semiconductor microcavities - Microlasers and coherent exciton-polariton emission," J. De Physique IV 3, 39-46 (1993).

Opt. Express (3)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

K. Srinvasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).

Phys. Rev. B (1)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef]

Semicond. Sci. Technol. (1)

D. P. Popescu, P. G. Eliseev, A. Stintz, K. J. Malloy, "Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well," Semicond. Sci. Technol. 19, 33-38 (2004).
[CrossRef]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Designing Photonic Crystals for Applications," in Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, Princeton, 1995).

K. Sakoda, "Optical Response of photonic crystals," in Optical Properties of Photonic Crystals, (Springer, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics