Abstract

We demonstrate a wideband circular polarization reflector fabricated as cascades of helical films with different pitch thickness by using glancing angle deposition (GLAD) technique. The full-width-at-half-maximum bandwidth of this reflector is measured from the reflectance spectra and is found about 200 nm indicating the feasibility of wideband reflector. A helical TiO2 film with three sections, each of different pitch thickness, is also studied. It shows three Bragg peaks at different wavelengths. To select appropriate material for this circular reflector, the optical properties of 5-turns TiO2, ZrO2, and Ta2O5 helical films and the porosity effect on the TiO2 helical film are investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
    [CrossRef]
  2. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005)
    [CrossRef]
  3. S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
    [CrossRef]
  4. A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik 114, 556–560 (2003).
    [CrossRef]
  5. K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
    [CrossRef]
  6. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin film,” Nature384, 616 (1996).
  7. K. Robbie and M. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  8. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
    [CrossRef]
  9. S.-H. Woo and C. K. Hwangbo, “Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD),” J. Korean Phys. Soc. 48, 1199–1204 (2006).
  10. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
    [CrossRef]
  11. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).
  12. I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phy. Lett. 74, 1794–1796 (1999).
    [CrossRef]
  13. K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43, 1570–1576 (2004).
    [CrossRef] [PubMed]
  14. A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
    [CrossRef] [PubMed]
  15. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum Evaporated Porous Silicon Photonic Interference Filters,” Appl. Opt. 42, 4212–4219 (2003).
    [CrossRef] [PubMed]
  16. S. R. Kennedy and M. J. Brett, “Porous Broadband Antireflection Coating by Glancing Angle Deposition,” Appl. Opt. 42, 4573–4579 (2003).
    [CrossRef] [PubMed]
  17. Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
    [CrossRef]
  18. J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
    [CrossRef]
  19. Q. Wu, I.J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
    [CrossRef]
  20. A. V. Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
    [CrossRef] [PubMed]
  21. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
    [CrossRef]
  22. F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films”, Microwave Opt. Technol. Lett. 42, 135–138 (2004).
    [CrossRef]
  23. C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
    [CrossRef]
  24. M. W. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34, 1483–1497 (2001).
    [CrossRef]
  25. Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Exp. 15, 6414–6419 (2007).
    [CrossRef]

2007 (1)

Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Exp. 15, 6414–6419 (2007).
[CrossRef]

2006 (2)

S.-H. Woo and C. K. Hwangbo, “Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD),” J. Korean Phys. Soc. 48, 1199–1204 (2006).

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

2005 (2)

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
[CrossRef]

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

2004 (6)

A. V. Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films”, Microwave Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43, 1570–1576 (2004).
[CrossRef] [PubMed]

A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
[CrossRef] [PubMed]

2003 (4)

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum Evaporated Porous Silicon Photonic Interference Filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

S. R. Kennedy and M. J. Brett, “Porous Broadband Antireflection Coating by Glancing Angle Deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik 114, 556–560 (2003).
[CrossRef]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

2001 (1)

M. W. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34, 1483–1497 (2001).
[CrossRef]

2000 (2)

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

Q. Wu, I.J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

1999 (1)

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phy. Lett. 74, 1794–1796 (1999).
[CrossRef]

1998 (1)

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

1997 (1)

K. Robbie and M. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

1995 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

1959 (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Adams, J.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Arnold, M.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

Beydaghyan, G.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum Evaporated Porous Silicon Photonic Interference Filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

Brett, M.

K. Robbie and M. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Brett, M. J.

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

A. V. Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
[CrossRef] [PubMed]

S. R. Kennedy and M. J. Brett, “Porous Broadband Antireflection Coating by Glancing Angle Deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin film,” Nature384, 616 (1996).

Brown, T.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum Evaporated Porous Silicon Photonic Interference Filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

Buzea, C.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Chiadini, F.

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films”, Microwave Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

De Silva, L.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

Dean, C.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Demirel, M. C.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
[CrossRef]

Elliott, C.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

Hawkeye, M. H.

Hawkeye, M. M.

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

Hodgkinson, I.

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phy. Lett. 74, 1794–1796 (1999).
[CrossRef]

Hodgkinson, I. J.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

Hodgkinson, I.J.

Q. Wu, I.J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Horn, M. W.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
[CrossRef]

A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik 114, 556–560 (2003).
[CrossRef]

Huang, Y.

Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Exp. 15, 6414–6419 (2007).
[CrossRef]

Hwangbo, C. K.

S.-H. Woo and C. K. Hwangbo, “Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD),” J. Korean Phys. Soc. 48, 1199–1204 (2006).

John, S.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

Kaminska, K.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43, 1570–1576 (2004).
[CrossRef] [PubMed]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum Evaporated Porous Silicon Photonic Interference Filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

Kennedy, S. R.

S. R. Kennedy and M. J. Brett, “Porous Broadband Antireflection Coating by Glancing Angle Deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

Knight, B.

Kowal, J.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Lakhtakia, A.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
[CrossRef]

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films”, Microwave Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik 114, 556–560 (2003).
[CrossRef]

Q. Wu, I.J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin film,” Nature384, 616 (1996).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005)
[CrossRef]

McCall, M. W.

M. W. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34, 1483–1497 (2001).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005)
[CrossRef]

Miguez, H.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

Popta, A. V.

Pursel, S. M.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
[CrossRef]

Robbie, K.

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43, 1570–1576 (2004).
[CrossRef] [PubMed]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum Evaporated Porous Silicon Photonic Interference Filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

K. Robbie and M. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin film,” Nature384, 616 (1996).

Sit, J. C.

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

A. V. Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
[CrossRef] [PubMed]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Steel, J. J.

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

Takeuchi, E.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

Toader, O.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

van Popta, A. C.

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
[CrossRef] [PubMed]

Woo, S.-H.

S.-H. Woo and C. K. Hwangbo, “Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD),” J. Korean Phys. Soc. 48, 1199–1204 (2006).

Wu, Q.

Q. Wu, I.J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Wu, Q. H.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phy. Lett. 74, 1794–1796 (1999).
[CrossRef]

Wu, S. T.

Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Exp. 15, 6414–6419 (2007).
[CrossRef]

Young, N. O.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Zhou, Y.

Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Exp. 15, 6414–6419 (2007).
[CrossRef]

Appl. Opt. (5)

Appl. Phy. Lett. (1)

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phy. Lett. 74, 1794–1796 (1999).
[CrossRef]

J. Appl. Phys. (1)

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[CrossRef]

J. Korean Phys. Soc. (1)

S.-H. Woo and C. K. Hwangbo, “Optical Anisotropy of Microstructure-Controlled TiO2 Films Fabricated by Glancing-Angle Deposition (GLAD),” J. Korean Phys. Soc. 48, 1199–1204 (2006).

J. Vac. Sci. Technol. A (2)

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

K. Robbie and M. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (2)

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B 23, 2545–2552 (2005).
[CrossRef]

Math. Comput. Model. (1)

M. W. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Math. Comput. Model. 34, 1483–1497 (2001).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films”, Microwave Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

Nature (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Opt. Eng. (1)

Q. Wu, I.J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Opt. Exp. (1)

Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Exp. 15, 6414–6419 (2007).
[CrossRef]

Opt. Lett. (1)

Optik (1)

A. Lakhtakia and M. W. Horn, “Bragg-regime engineering by columnar thinning of chiral sculptured thin films,” Optik 114, 556–560 (2003).
[CrossRef]

Photon. (1)

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. 1, 37–42 (2003).

Polymer (1)

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, “Growth of sculptured polymer submicronwire assemblies by vapor deposition,” Polymer 46, 9544–9548 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Sensors and Actuators B (1)

J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sensors and Actuators B,  120, 213–219 (2006).
[CrossRef]

Other (2)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin film,” Nature384, 616 (1996).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of glancing angle deposition.

Fig. 2.
Fig. 2.

LCP reflectance spectra at various glancing angles: (a) helical TiO2 films with 5 turns, (b) helical ZrO2 films with 5 turns, and (c) helical Ta2O5 films with 5 turns.

Fig. 3.
Fig. 3.

Reflectance spectra of 5-turns helical TiO2 films as the air to vacuum: (a) left-handed and (b) right-handed.

Fig. 4.
Fig. 4.

The wideband circular Bragg reflectors: (a) transmittance spectrum and (b) LCP reflectance spectrum.

Fig. 5.
Fig. 5.

The three band circular Bragg reflectors with different deposition rates: (a) transmittance spectrum and (b) LCP reflectance spectrum.

Fig. 6.
Fig. 6.

Cross-sectional SEM images of TiO2 helical films: (a) broad-band circular Bragg reflector, (b) three band circular Bragg reflectors, (c) 5-turns left handed TiO2 helical films and (d) 5-turns right handed TiO2 helical films.

Metrics