Abstract

A compact, tunable, narrowband terahertz source was demonstrated by mixing a single longitudinal mode 2.408 THz, free running quantum cascade laser with a 2–20 GHz microwave sweeper in a conventional corner-cube-mounted Schottky diode. The sideband spectra were characterized with a Fourier transform spectrometer, and the radiation was tuned through several D2O rotational transitions to estimate the longer term (t≥several sec) bandwidth of the source. A spectral resolution of 2 MHz in CW regime was observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89 (2006).
    [CrossRef]
  2. M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
    [CrossRef]
  3. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
    [CrossRef]
  4. A. Barkan, et al., “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett. 29, 575 (2004).
    [CrossRef] [PubMed]
  5. S. Barbieri, et al., “Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode,” Opt. Lett. 29, 1632 (2004).
    [CrossRef] [PubMed]
  6. A. Baryshev, et al., “Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 031115 (2006).
    [CrossRef]
  7. A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837 (2005).
    [CrossRef] [PubMed]
  8. K. M. Evenson, D. A. Jennings, and F. R. Peterson, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
    [CrossRef]
  9. D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, “Generation of continuously tunable laser sidebands in the submillimeter region,” Appl. Phys. Lett. 32, 367–369 (1978).
    [CrossRef]
  10. W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
    [CrossRef]
  11. T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Inst. and Meas. 42, 412 (1993).
    [CrossRef]
  12. R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
    [CrossRef] [PubMed]
  13. B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
    [CrossRef]
  14. www.virginiadiodes.com.
  15. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [CrossRef]
  16. A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
    [CrossRef]
  17. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
    [CrossRef]
  18. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A.Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219 (1998).
    [CrossRef]
  19. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
    [CrossRef]
  20. J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.
  21. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
    [CrossRef] [PubMed]
  22. Thomas Keating Ltd, Billinghurst, West Sussex, England.
  23. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975), Chap. 13.
  24. http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

2007 (2)

2006 (3)

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

A. Baryshev, et al., “Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 031115 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89 (2006).
[CrossRef]

2005 (2)

A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837 (2005).
[CrossRef] [PubMed]

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

2004 (2)

2000 (1)

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
[CrossRef]

1995 (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

1993 (1)

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Inst. and Meas. 42, 412 (1993).
[CrossRef]

1984 (1)

K. M. Evenson, D. A. Jennings, and F. R. Peterson, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

1979 (1)

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
[CrossRef]

1978 (1)

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, “Generation of continuously tunable laser sidebands in the submillimeter region,” Appl. Phys. Lett. 32, 367–369 (1978).
[CrossRef]

Alton, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
[CrossRef]

Barbieri, S.

Barkan, A.

Baryshev, A.

A. Baryshev, et al., “Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 031115 (2006).
[CrossRef]

Beere, H.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

Beere, H. E.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
[CrossRef]

Betz, A. L.

Bicanic, D. D.

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, “Generation of continuously tunable laser sidebands in the submillimeter region,” Appl. Phys. Lett. 32, 367–369 (1978).
[CrossRef]

Blumberg, W. A. M.

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
[CrossRef]

Boreiko, R. T.

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Brown, E.R.

A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
[CrossRef]

Cai, S.

Capasso, F.

Cho, A.Y.

Danylov, A. A.

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
[CrossRef] [PubMed]

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Dhillon, S. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Drouin, B. J.

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Duffy, S. M.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

Dymanus, A.

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, “Generation of continuously tunable laser sidebands in the submillimeter region,” Appl. Phys. Lett. 32, 367–369 (1978).
[CrossRef]

Evenson, K. M.

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Inst. and Meas. 42, 412 (1993).
[CrossRef]

K. M. Evenson, D. A. Jennings, and F. R. Peterson, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

Faist, J.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A.Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219 (1998).
[CrossRef]

Fetterman, H. R.

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
[CrossRef]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
[CrossRef]

Gatesman, A. J.

Gendriesch, R.

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

Giles, R. H.

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
[CrossRef] [PubMed]

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Gmachl, C.

Goldsmith, P. F.

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
[CrossRef]

Goodhue, W. D.

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Gossard, A. C.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

Goyette, T. M.

Han, J.

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

Hu, Q.

Jackson, A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

Jennings, D. A.

K. M. Evenson, D. A. Jennings, and F. R. Peterson, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

Kumar, S.

Lewen, F.

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

Li, J.

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Linden, K. J.

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
[CrossRef] [PubMed]

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Linfield, E. H.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
[CrossRef]

Liu, W.

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Maiwald, F. W.

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Matsuura, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

McIntosh, K.A.

A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
[CrossRef]

Namjou, K.

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Nixon, W. E.

Pearson, J. C.

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Peck, D. D.

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
[CrossRef]

Peterson, F. R.

K. M. Evenson, D. A. Jennings, and F. R. Peterson, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

Pine, A.S.

A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
[CrossRef]

Qian, X.

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Reno, J. L.

Ritchie, D.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

Ritchie, D. A.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
[CrossRef]

Scalari, G.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

Scamarcio, G.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Schawlow, A. L.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975), Chap. 13.

Sirtori, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Sivco, D. L.

Spagnolo, V.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Suenram, R.D.

A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
[CrossRef]

Townes, C. H.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975), Chap. 13.

Vangala, S. R.

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Varburg, T. D.

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Inst. and Meas. 42, 412 (1993).
[CrossRef]

Verghese, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

Vitiello, M. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Waldman, J.

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
[CrossRef] [PubMed]

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Walther, C.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

Wanke, M. C.

Whittaker, E. A.

Williams, B. S.

Winnewisser, G.

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

Zuidberg, B. F. J.

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, “Generation of continuously tunable laser sidebands in the submillimeter region,” Appl. Phys. Lett. 32, 367–369 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, “Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz,” Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

A. Baryshev, et al., “Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 031115 (2006).
[CrossRef]

K. M. Evenson, D. A. Jennings, and F. R. Peterson, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[CrossRef]

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, “Generation of continuously tunable laser sidebands in the submillimeter region,” Appl. Phys. Lett. 32, 367–369 (1978).
[CrossRef]

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, “Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F,” Appl. Phys. Lett. 35, 582–585 (1979).
[CrossRef]

Electron. Lett. (1)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42, 89 (2006).
[CrossRef]

IEEE Trans. Inst. and Meas. (1)

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Inst. and Meas. 42, 412 (1993).
[CrossRef]

J. Mol. Spectrosc. (2)

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, “Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators,” J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

A.S. Pine, R.D. Suenram, E.R. Brown, and K.A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2Self BroadeningJ. Mol. Spectrosc. 175, 37–47 (1996).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Other (7)

www.virginiadiodes.com.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett., 85, 16742004.
[CrossRef]

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21–25 Oct. 2007, pgs. 860–861.

Thomas Keating Ltd, Billinghurst, West Sussex, England.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975), Chap. 13.

http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech.49, 1032 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Spectral intensity of the TQCL in CW (a) and pulsed (b) mode at different applied voltages.

Fig. 2.
Fig. 2.

Setup used for sideband generation experiment.

Fig. 3.
Fig. 3.

Spectra of the sidebands produced by applying different microwave frequencies in CW (a) and pulsed (b) regimes with a 2.408 THz QCL. Insets are the sideband spectra corresponding to 20 GHz RF signal, which allow observing higher order sidebands.

Fig. 4.
Fig. 4.

Setup used for gas spectroscopy experiments.

Fig. 5.
Fig. 5.

Spectra of D2O at 500 mTorr in CW (a) mode and pulsed (b) mode produced by sweeping the microwave frequency from 2 to 20 GHz.

Fig. 6.
Fig. 6.

Spectra of 2420782 MHz line of D2O in CW (a) mode and pulsed (b) mode at different pressures of D2O.

Fig. 7.
Fig. 7.

TQCL current in the pulsed mode as a function of time.

Tables (2)

Tables Icon

Table 1. List of 4 strongest pure rotational transitions of D2O for CW mode.

Tables Icon

Table 2. List of 4 strongest pure rotational transitions of D2O for pulsed mode.

Metrics