Abstract

A compact, tunable, narrowband terahertz source was demonstrated by mixing a single longitudinal mode 2.408 THz, free running quantum cascade laser with a 2–20 GHz microwave sweeper in a conventional corner-cube-mounted Schottky diode. The sideband spectra were characterized with a Fourier transform spectrometer, and the radiation was tuned through several D2O rotational transitions to estimate the longer term (t≥several sec) bandwidth of the source. A spectral resolution of 2 MHz in CW regime was observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89 (2006).
    [CrossRef]
  2. M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, "Terahertz quantum cascade lasers with large wall-plug efficiency," Appl. Phys. Lett. 90, 191115 (2007).
    [CrossRef]
  3. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89, 231121 (2006).
    [CrossRef]
  4. A. Barkan, et al., "Linewidth and tuning characteristics of terahertz quantum cascade lasers," Opt. Lett. 29, 575 (2004).
    [CrossRef] [PubMed]
  5. S. Barbieri, et al., "Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode," Opt. Lett. 29, 1632 (2004).
    [CrossRef] [PubMed]
  6. A. Baryshev, et al., "Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser," Appl. Phys. Lett. 89, 031115 (2006).
    [CrossRef]
  7. A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Frequency and phase-lock control of a 3 THz quantum cascade laser," Opt. Lett. 30, 1837 (2005).
    [CrossRef] [PubMed]
  8. K. M. Evenson, D. A. Jennings, and F. R. Peterson, "Tunable far-infrared spectroscopy," Appl. Phys. Lett. 44, 576-578 (1984).
    [CrossRef]
  9. D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, "Generation of continuously tunable laser sidebands in the submillimeter region," Appl. Phys. Lett. 32, 367-369 (1978).
    [CrossRef]
  10. W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, "Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F," Appl. Phys. Lett. 35, 582-585 (1979).
    [CrossRef]
  11. T. D. Varburg and K. M. Evenson, "Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared," IEEE Trans. Inst. and Meas. 42, 412 (1993).
    [CrossRef]
  12. R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, "Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators," J. Mol. Spectrosc. 203, 205 (2000).
    [CrossRef] [PubMed]
  13. B. J. Drouin, F. W. Maiwald, and J. C. Pearson, "Application of cascaded frequency multiplication to molecular spectroscopy," Rev. Sci. Instrum. 76, 093113 (2005).
    [CrossRef]
  14. www.virginiadiodes.com.
  15. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperature-grown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
    [CrossRef]
  16. A. S. Pine, R. D. Suenram, E. R. Brown, and K. A. McIntosh, "A Terahertz Photomixing Spectrometer: Application to SO2 Self Broadening," J. Mol. Spectrosc. 175, 37-47 (1996).
    [CrossRef]
  17. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032 (2001).
    [CrossRef]
  18. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A.Y. Cho, "Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser," Opt. Lett. 23, 219 (1998).
    [CrossRef]
  19. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett. 85, 1674 (2004).
    [CrossRef]
  20. J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21-25 Oct. 2007, pgs. 860 - 861.
  21. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, "Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide," Appl. Opt. 46, 5051-5055 (2007).
    [CrossRef] [PubMed]
  22. Thomas Keating Ltd, Billinghurst, West Sussex, England.
  23. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975), Chap. 13.
  24. http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

2007 (2)

2006 (3)

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

A. Baryshev, et al., "Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser," Appl. Phys. Lett. 89, 031115 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89 (2006).
[CrossRef]

2005 (2)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, "Application of cascaded frequency multiplication to molecular spectroscopy," Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Frequency and phase-lock control of a 3 THz quantum cascade laser," Opt. Lett. 30, 1837 (2005).
[CrossRef] [PubMed]

2004 (3)

2001 (1)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032 (2001).
[CrossRef]

2000 (1)

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, "Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators," J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

A. S. Pine, R. D. Suenram, E. R. Brown, and K. A. McIntosh, "A Terahertz Photomixing Spectrometer: Application to SO2 Self Broadening," J. Mol. Spectrosc. 175, 37-47 (1996).
[CrossRef]

1995 (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperature-grown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

1993 (1)

T. D. Varburg and K. M. Evenson, "Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared," IEEE Trans. Inst. and Meas. 42, 412 (1993).
[CrossRef]

1984 (1)

K. M. Evenson, D. A. Jennings, and F. R. Peterson, "Tunable far-infrared spectroscopy," Appl. Phys. Lett. 44, 576-578 (1984).
[CrossRef]

1979 (1)

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, "Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F," Appl. Phys. Lett. 35, 582-585 (1979).
[CrossRef]

1978 (1)

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, "Generation of continuously tunable laser sidebands in the submillimeter region," Appl. Phys. Lett. 32, 367-369 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

K. M. Evenson, D. A. Jennings, and F. R. Peterson, "Tunable far-infrared spectroscopy," Appl. Phys. Lett. 44, 576-578 (1984).
[CrossRef]

D. D. Bicanic, B. F. J. Zuidberg, and A. Dymanus, "Generation of continuously tunable laser sidebands in the submillimeter region," Appl. Phys. Lett. 32, 367-369 (1978).
[CrossRef]

W. A. M. Blumberg, H. R. Fetterman, D. D. Peck, and P. F. Goldsmith, "Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F," Appl. Phys. Lett. 35, 582-585 (1979).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperature-grown GaAs," Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, "Terahertz quantum cascade lasers with large wall-plug efficiency," Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89, 231121 (2006).
[CrossRef]

A. Baryshev, et al., "Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser," Appl. Phys. Lett. 89, 031115 (2006).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett. 85, 1674 (2004).
[CrossRef]

Electron. Lett. (1)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89 (2006).
[CrossRef]

IEEE Trans. Inst. and Meas. (1)

T. D. Varburg and K. M. Evenson, "Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared," IEEE Trans. Inst. and Meas. 42, 412 (1993).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032 (2001).
[CrossRef]

J. Mol. Spectrosc. (2)

A. S. Pine, R. D. Suenram, E. R. Brown, and K. A. McIntosh, "A Terahertz Photomixing Spectrometer: Application to SO2 Self Broadening," J. Mol. Spectrosc. 175, 37-47 (1996).
[CrossRef]

R. Gendriesch, F. Lewen, G. Winnewisser, and J. Han, "Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators," J. Mol. Spectrosc. 203, 205 (2000).
[CrossRef] [PubMed]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, "Application of cascaded frequency multiplication to molecular spectroscopy," Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Other (5)

www.virginiadiodes.com.

J. Li, X. Qian, W. Liu, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, R. H. Giles, and K. J. Linden, The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, 2007. 21-25 Oct. 2007, pgs. 860 - 861.

Thomas Keating Ltd, Billinghurst, West Sussex, England.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover Publications, 1975), Chap. 13.

http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Spectral intensity of the TQCL in CW (a) and pulsed (b) mode at different applied voltages.

Fig. 2.
Fig. 2.

Setup used for sideband generation experiment.

Fig. 3.
Fig. 3.

Spectra of the sidebands produced by applying different microwave frequencies in CW (a) and pulsed (b) regimes with a 2.408 THz QCL. Insets are the sideband spectra corresponding to 20 GHz RF signal, which allow observing higher order sidebands.

Fig. 4.
Fig. 4.

Setup used for gas spectroscopy experiments.

Fig. 5.
Fig. 5.

Spectra of D2O at 500 mTorr in CW (a) mode and pulsed (b) mode produced by sweeping the microwave frequency from 2 to 20 GHz.

Fig. 6.
Fig. 6.

Spectra of 2420782 MHz line of D2O in CW (a) mode and pulsed (b) mode at different pressures of D2O.

Fig. 7.
Fig. 7.

TQCL current in the pulsed mode as a function of time.

Tables (2)

Tables Icon

Table 1. List of 4 strongest pure rotational transitions of D2O for CW mode.

Tables Icon

Table 2. List of 4 strongest pure rotational transitions of D2O for pulsed mode.

Metrics