Abstract

The monolithic integration of epitaxially-grown InGaAs/GaAs self-organized quantum dot lasers with hydrogenated amorphous silicon (a:Si-H) waveguides on silicon substrates is demonstrated. Hydrogenated amorphous silicon waveguides, formed by plasma-enhanced-chemical-vapor deposition (PECVD), exhibit a propagation loss of ~10 dB/cm at a wavelength of 1.05 µm. The laser-waveguide coupling, with coupling coefficient of 22%, is achieved through a 3.2 µm-width groove etched by focused-ion-beam (FIB) milling which creates high-quality etched GaAs facets.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
    [CrossRef]
  2. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  3. M. Lipson, "Guiding, modulating, and emitting light on silicon ― challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
    [CrossRef]
  4. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, "Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors," Opt. Lett. 28, 1150-1152 (2003).
    [CrossRef] [PubMed]
  5. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  6. O. Qasaimeh, P. Bhattacharya, and E. T. Croke, "SiGe-Si quantum-well electroabsorption modulators," IEEE Photon. Technol. Lett. 10, 807-809 (1998).
    [CrossRef]
  7. Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
    [CrossRef] [PubMed]
  8. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  9. L. Liao, D. Samara-Rubio, M. Morse, A. S. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  10. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  11. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
    [CrossRef]
  12. J. Yang, P. Bhattacharya, and Z. Mi, "High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters," IEEE Trans. Electron Dev. 54, 2849-2855 (2007).
    [CrossRef]
  13. J. Yang, Z. Mi, and P. Bhattacharya, "Grooved-coupled InGaAs/GaAs quantum dot laser/waveguide on silicon," J. Lightwave Technol. 25, 1826-1831 (2007).
    [CrossRef]
  14. A. Harke, M. Krause, and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
    [CrossRef]
  15. Z. Mi, P. Bhattacharya, and J. Yang, "Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs," Appl. Phys. Lett. 89, 153109 (2006).
    [CrossRef]

Other (15)

R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

M. Lipson, "Guiding, modulating, and emitting light on silicon ― challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, "Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors," Opt. Lett. 28, 1150-1152 (2003).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

O. Qasaimeh, P. Bhattacharya, and E. T. Croke, "SiGe-Si quantum-well electroabsorption modulators," IEEE Photon. Technol. Lett. 10, 807-809 (1998).
[CrossRef]

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. S. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Mi, "High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters," IEEE Trans. Electron Dev. 54, 2849-2855 (2007).
[CrossRef]

J. Yang, Z. Mi, and P. Bhattacharya, "Grooved-coupled InGaAs/GaAs quantum dot laser/waveguide on silicon," J. Lightwave Technol. 25, 1826-1831 (2007).
[CrossRef]

A. Harke, M. Krause, and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005).
[CrossRef]

Z. Mi, P. Bhattacharya, and J. Yang, "Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs," Appl. Phys. Lett. 89, 153109 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of an integrated quantum dot laser and a:Si-H waveguide on silicon with a dislocation filter consisting of 10-layers of InAs quantum dots.

Fig. 2.
Fig. 2.

Scanning electron microscope image of the cross-section of an InGaAs/GaAs quantum dot laser with a focused-ion-beam etched facet.

Fig. 3.
Fig. 3.

Scanning electron microscope image of an integrated InGaAs quantum dot laser/a:Si-H waveguide on silicon with the focused-ion-beam etched coupling groove.

Fig. 4.
Fig. 4.

Light-current characteristics for output from the InGaAs quantum dot laser end (a) and the coupled a:Si-H waveguide (b). The inset in (a) is the lasing spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S 12 2 = P 2 P 1 1 S 11 ( 1 t 3 ) 1 2 t 2 2 t 2 2 ( t 1 t 3 ) 2 t 3 1 P 2 P 1 ( t 1 t 2 t 3 ) 2

Metrics