Abstract

Thermal analysis of the monoclinic solid state laser host KLu(WO4)2 is presented. The specific heat was measured by the relaxation method in the temperature range from 1.9 to 385 K: its value at room temperature is 0.324 J/gK. The Debye temperature and the sound velocity amount to 303±3 K and 3734 m/s. The linear thermal expansion tensor was measured by X-ray powder diffraction from room temperature up to 773 K. The eigenvalues of this tensor are α11=8.98×10-6 K-1, α22=3.35×10-6 K-1, and α33=16.72×10-6 K-1, with the maximum value in the a-b crystallographic plane, at 31.94° from the Ng principal optical axis. The thermal diffusivity and its anisotropy in the temperature range between 300 and 500 K were measured by the pyroelectric method to determine the thermal conductivity tensor. The eigenvalues of the thermal conductivity are κ11=2.95 Wm-1K-1, κ22=2.36 Wm-1K-1, and κ33=4.06 Wm-1K-1, with the maximum value along a direction again in the a-b crystallographic plane, at 40.75° from the Ng principal optical axis. Simulation of the temperature distribution in a bulk sample of KLu(WO4)2 with dimensions 3×3×3 mm3 shows that pump and laser beam directions along the Np principal optical axis in terms of thermal effects are preferable because the propagation is along a quasi-isothermal path.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes, (CRC Press, New York, 1996).
  2. J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
    [CrossRef] [PubMed]
  3. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
    [CrossRef]
  4. U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
    [CrossRef]
  5. Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
    [CrossRef]
  6. M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
    [CrossRef]
  7. W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text, (Springer-Verlag, New York, 2003).
  8. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
    [CrossRef]
  9. M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).
  10. J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
    [CrossRef]
  11. Y. Sato and T. Taira, "The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12, measured by quasi-one-dimensional flash method," Opt. Express 14,10528-10536 (2006).
    [CrossRef] [PubMed]
  12. T. Kushida, "Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates," Phys. Rev. 185, 500-508 (1969).
    [CrossRef]
  13. X. Chen and B. Di Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal," J. Appl. Phys. 75, 1710-1714 (1994).
    [CrossRef]
  14. D. D. L. Chung, P. W. DeHaven, H. Arnold, and D. Ghosh, X-ray Diffraction at Elevated Temperatures. A Method for In Situ Process Analysis, (VCH, New York, 1993).
  15. M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
    [CrossRef]
  16. A. Authier (Ed.), International Tables for Crystallography, Volume D: Physical Properties of Crystals (The International Union of Crystallography, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003).
  17. M. Chirtoc, D. Dadarlat, D. Bicanic, J. S. Antoniow, and M. Egée, Progress in Photothermal and Photoacoustic Science and Technology (vol 3, ed. by A Mandelis and P Hess, Bellingham, WA, SPIE Optical Engineering Press, 1997).
  18. S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
    [CrossRef]
  19. R. E. Hummel, Electronic Properties of Materials, (Springer-Verlag, New York, 1985).
  20. I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997).
    [CrossRef]
  21. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
    [CrossRef]

2008

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

2007

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
[CrossRef] [PubMed]

2006

Y. Sato and T. Taira, "The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12, measured by quasi-one-dimensional flash method," Opt. Express 14,10528-10536 (2006).
[CrossRef] [PubMed]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

2005

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
[CrossRef]

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

2003

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

2002

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

2001

M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
[CrossRef]

1997

I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997).
[CrossRef]

1994

X. Chen and B. Di Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal," J. Appl. Phys. 75, 1710-1714 (1994).
[CrossRef]

1969

T. Kushida, "Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates," Phys. Rev. 185, 500-508 (1969).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
[CrossRef]

Aguilo, M.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Aguiló, M.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

Aznar, A.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Ba, M.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Baranski, M.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Borowiec, M. T.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Buisine, J. M.

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

Chen, X.

X. Chen and B. Di Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal," J. Appl. Phys. 75, 1710-1714 (1994).
[CrossRef]

Chirtoc, M.

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

Delenclos, S.

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

Di Bartolo, B.

X. Chen and B. Di Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal," J. Appl. Phys. 75, 1710-1714 (1994).
[CrossRef]

Diaz, F.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Díaz, F.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

Dyakonov, V. P.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

Galan, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

Griebner, U.

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Grunwald, R.

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Gutowska, M.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Kaczorowski, D.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Kolinsky, C.

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

Kushida, T.

T. Kushida, "Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates," Phys. Rev. 185, 500-508 (1969).
[CrossRef]

Liu, J.

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Lu, Q.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Massons, J.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
[CrossRef]

Mateos, X.

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
[CrossRef] [PubMed]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
[CrossRef]

Mochalov, I. V.

I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
[CrossRef]

Petrov, V.

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Pikul, A.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Pujol, M. C.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
[CrossRef]

Rivier, S.

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

Sahraoui, A. H.

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

Sato, Y.

Silvestre, Ò.

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

Solans, X.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

Sole, R. M.

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Solé, R.

M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
[CrossRef]

Surinach, S.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

Szewczyk, A.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Szymczak, H.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Taira, T.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

Wang, J.

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
[CrossRef] [PubMed]

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Wang, K.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Wang, X.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Wang, Z.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Yu, W.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Zayarnyuk, T.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Zhang, H.

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007).
[CrossRef] [PubMed]

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Zhang, J.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

Zubov, E. E.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Appl. Phys. Lett.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005).
[CrossRef]

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003).
[CrossRef]

IEEE J. Quantum Electron.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005).
[CrossRef]

Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007).
[CrossRef]

J. Appl. Cryst.

M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005).
[CrossRef]

X. Chen and B. Di Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal," J. Appl. Phys. 75, 1710-1714 (1994).
[CrossRef]

Mater. Sci. Forum

M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001).
[CrossRef]

New J. Phys.

M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).

Opt. Eng.

I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

T. Kushida, "Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates," Phys. Rev. 185, 500-508 (1969).
[CrossRef]

Rev. Sci. Instrum.

S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002).
[CrossRef]

Other

R. E. Hummel, Electronic Properties of Materials, (Springer-Verlag, New York, 1985).

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes, (CRC Press, New York, 1996).

A. Authier (Ed.), International Tables for Crystallography, Volume D: Physical Properties of Crystals (The International Union of Crystallography, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003).

M. Chirtoc, D. Dadarlat, D. Bicanic, J. S. Antoniow, and M. Egée, Progress in Photothermal and Photoacoustic Science and Technology (vol 3, ed. by A Mandelis and P Hess, Bellingham, WA, SPIE Optical Engineering Press, 1997).

D. D. L. Chung, P. W. DeHaven, H. Arnold, and D. Ghosh, X-ray Diffraction at Elevated Temperatures. A Method for In Situ Process Analysis, (VCH, New York, 1993).

W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text, (Springer-Verlag, New York, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Molar heat capacity of a single crystal of KLuW versus temperature

Fig. 2.
Fig. 2.

Lattice component Cp /T and Debye temperature θD of KLuW.

Fig. 3.
Fig. 3.

Unit cell parameters evolution with temperature (a) and linear thermal expansion (b) of KLuW.

Fig. 4.
Fig. 4.

Thermal diffusivity (a) and conductivity (b) of KLuW measured along the crystallographic directions a , b , c and c*.

Fig. 5.
Fig. 5.

Thermal conductivity ellipsoid of KLuW.

Fig.6.
Fig.6.

Geometrical sketch of the laser crystal modelled. Units are mm.

Fig.7.
Fig.7.

Overheating for pump along Ng and Np for the faces y=1.5 mm (upper part) and z=1.5 mm (lower part).

Tables (3)

Tables Icon

Table 1. Specific heat capacity Cp and molar heat capacity of monoclinic KREW (RE=Gd, Y, Yb and Lu)

Tables Icon

Table 2. Linear thermal expansion coefficients of KREW compounds (RE=Gd, Y, Yb, Lu), in units 10-6 K-1, and some of their ratios [6,15].

Tables Icon

Table 3. Thermal conductivity values (in units W/m-1K-1) of KLuW and related compounds at 300K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D = π 2 m 2 ,
D ( T ) = ( 1 D ref Δ ( T ) π f ) 2

Metrics