Abstract

We devised a silicon photonic circuit with polarization diversity that consists of polarization splitters and polarization rotators. The splitter is based on a simple directional coupler and the rotator has an off-axis double-core structure. Both devices can be made by using planar fabrication technology and require no complex proceses for the fabrication of three-dimensional structures. We fabricated a polarization-independent wavelength filter based on Si wire waveguides as an application of the polarization diversity. The filter consists of the polarization splitters, the rotators, and a ring resonator. The polarization-dependent loss of the filter is about 1 dB. A 10-Gbps data transmission with scrambled polarization is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization rotator based on silicon wire waveguides

Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 16(4) 2628-2635 (2008)

A tunable polarization diversity silicon photonics filter

Jing Zhang, Huijuan Zhang, Shiyi Chen, Mingbin Yu, Guo Qiang Lo, and Dim Lee Kwong
Opt. Express 19(14) 13063-13072 (2011)

Ultrasmall polarization splitter based on silicon wire waveguides

Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 14(25) 12401-12408 (2006)

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  2. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).
  3. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  4. K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
    [Crossref] [PubMed]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
    [Crossref] [PubMed]
  6. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
    [Crossref]
  7. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
    [Crossref]
  8. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).
  9. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
    [Crossref] [PubMed]
  10. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
    [Crossref]
  11. I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17, 100–102 (2005).
    [Crossref]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  13. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
    [Crossref] [PubMed]
  14. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

2006 (2)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

2005 (4)

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17, 100–102 (2005).
[Crossref]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

2004 (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

2003 (2)

K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

1997 (1)

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17, 100–102 (2005).
[Crossref]

Baets, R.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Barwicz, T.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17, 100–102 (2005).
[Crossref]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Groen, F. H.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

Haus, H. A.

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref] [PubMed]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Ippen, E. P.

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref] [PubMed]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Kimerling, L. C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17, 100–102 (2005).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Metaal, E. G.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Oei, Y. S.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

Pedersen, J. W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

Qi, M.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Rakich, P. T.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Shinojima, S.

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Smith, H. I.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Socci, L.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Takahashi, J.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
[Crossref] [PubMed]

Takahashi, M.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

van der Tol, J. J. G. M.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

van Gaalen, J. J.-W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

Watanabe, T

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Watts, M. R.

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[Crossref] [PubMed]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express,  14, 12401–12408 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

K. Yamada, T. Shoji, T. Tsuchizawa, T Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663–1664 (2003)
[Crossref] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

IEEE J Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Micro-Fabrication Technology,” IEEE J Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (4)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguides,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).
[Crossref]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compacr Two-Dimensional Grating Coupler used as a Polarization Splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J.-W. van Gaalen, Y. S. Oei, and F. H. Groen, “A Short Polarization Splitter without Metal Overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17, 100–102 (2005).
[Crossref]

IEICE Trans. Electron. (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, T. Shoji, H. Fukuda, S. Itabashi, and H. Morita, “Microphotonics devices based on Silicon Wire Waveguiding System,” IEICE Trans. Electron. E87-C, 351–358 (2004).

Opt. Express (2)

Opt. Lett. (2)

Other (2)

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Polarization Beam Splitter and Rotator for Polarization-Independent Silicon Photonic Circuit,” GFP2007 Techinical Digest WA2 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of a photonic circuit with polarization diversity consisting of polatization splitters and rotators.

Fig. 2.
Fig. 2.

Two-route configuration for the polarization diversity circuit.

Fig. 3.
Fig. 3.

Schematic diagram of the polarization rotator.

Fig. 4.
Fig. 4.

(a) SEM image of a fabricated splitter. (b, c) Measured transmittion spectra for the splitter.

Fig. 5.
Fig. 5.

(a) Schematic diagram of the polarization rotator. (b) Transmission spectra of the polarization rotator with a 35-µm length. (c) Polarizatin rotation angle estimated by the measured Poincaré map and polarization extinction ratio calculated from the measured polarization rotation angle.

Fig. 6.
Fig. 6.

Photograph and schematic diagram of the polarization diversity circuit.

Fig. 7.
Fig. 7.

Transmission spectra of wavelength filters with and without polarization diversity.

Fig. 8.
Fig. 8.

10-Gbps data transmission for the polarization-independent wavelength filter. (a) Experimental setup. (b, c) Measured eyediagram with and without polarization diversity.

Fig. 9.
Fig. 9.

(a) Definition of offset. (b) Eyediagram for the filter with 0-nm offset. (c) Eyediagram for the filter with 30-nm offset.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η 1 = η PS 1 TM × η PR 1 × η PS 2 TE
η 2 = η PS 1 TE × η PR 2 × η PS 2 TM

Metrics