Abstract

We have developed a 5-W 756-nm injection-locked Ti:sapphire laser and frequency-doubled it in an external enhancement cavity for the generation of watt-level 378-nm single-frequency radiation, which is essential for isotope-selective optical pumping of thallium atoms. With a lithium triborate (LBO) crystal in the enhancement cavity, 1.1 W at 378 nm was coupled out from the cavity. Such results are to our knowledge the highest powers of continuous-wave single-frequency radiation generated from a Ti:sapphire laser and its frequency doubling.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakuma, Y. Asakawa, and M. Obara, "Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal," Opt. Lett. 29, 92 (2004).
    [CrossRef] [PubMed]
  2. P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, "Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser," Opt. Lett. 32, 268 (2007).
    [CrossRef] [PubMed]
  3. E. Jurdik, J. Hohlfeld, A. F. van Etteger, A. J. Toonen, W. L. Meerts, H. van Kempen, and Th. Rasing, "Performance optimization of an external enhancement resonator for optical second-harmonic generation," J. Opt. Soc. Am. B 19, 1660 (2002).
    [CrossRef]
  4. R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
    [CrossRef]
  5. H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, "Efficient frequency doubling of 1-W continuous-wave Ti:sapphire laser with a robust high-finesse external cavity," Appl. Opt. 42, 1036 (2003).
    [CrossRef] [PubMed]
  6. V. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commun. 236, 219 (2004).
    [CrossRef]
  7. M. Thorhauge, J. L. Mortensen, P. Tidemand-Lichtenberg, and P. Buchhave, "Tunable intra-cavity SHG of CW Ti:Sapphire lasers around 785 nm and 810 nm in BiBO-crystals," Opt. Express 14, 2283 (2006).
    [CrossRef] [PubMed]
  8. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, "High-efficiency blue-light generation with a ring cavity with periodically poled KTP," J. Opt. Soc. Am. B 24, 576 (2007).
    [CrossRef]
  9. L. S. Cruz and F. C. Cruz, "External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO," Opt. Express 15, 11913 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11913.
    [CrossRef] [PubMed]
  10. A. Owunwanne, M. Patel, and S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).
  11. P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
    [CrossRef]
  12. Y. H. Cha, Y. W. Lee, K.-H. Ko, E. C. Jung, G. Lim, J. Kim, T.-S. Kim, and D.-Y. Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810 (2005).
    [CrossRef] [PubMed]
  13. R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  14. H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
    [CrossRef]

2007

2006

2005

2004

2003

H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
[CrossRef]

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, "Efficient frequency doubling of 1-W continuous-wave Ti:sapphire laser with a robust high-finesse external cavity," Appl. Opt. 42, 1036 (2003).
[CrossRef] [PubMed]

2002

1995

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Asakawa, Y.

Baxter, G. W.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Bramati, A.

Buchhave, P.

Butterworth, S. D.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Cha, Y. H.

Chiummo, A.

Clausen, C.

Cruz, F. C.

Cruz, L. S.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Drewsen, M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Fortson, E. N.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

Giacobino, E.

Hald, J.

V. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commun. 236, 219 (2004).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hanna, D. C.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Herskind, P.

Hohlfeld, J.

Hough, J.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Iwane, T.

Jeong, D.-Y.

Y. H. Cha, Y. W. Lee, K.-H. Ko, E. C. Jung, G. Lim, J. Kim, T.-S. Kim, and D.-Y. Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810 (2005).
[CrossRef] [PubMed]

H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
[CrossRef]

Jung, E. C.

Y. H. Cha, Y. W. Lee, K.-H. Ko, E. C. Jung, G. Lim, J. Kim, T.-S. Kim, and D.-Y. Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810 (2005).
[CrossRef] [PubMed]

H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
[CrossRef]

Jurdik, E.

Kim, J.

Kim, T.-S.

Ko, K.-H.

Y. H. Cha, Y. W. Lee, K.-H. Ko, E. C. Jung, G. Lim, J. Kim, T.-S. Kim, and D.-Y. Jeong, "Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser," Appl. Opt. 44, 7810 (2005).
[CrossRef] [PubMed]

H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
[CrossRef]

Kowalski, F. B.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kumagai, H.

Lamoreaux, S. K.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

Lee, Y. W.

Lim, G.

Lindballe, J.

Majumder, P. K.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

Mckinnie, I. T.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Meekhof, D. M.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

Meerts, W. L.

Midorikawa, K.

Moon, H. S.

H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
[CrossRef]

Mortensen, J. L.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Obara, M.

Rasing, Th.

Ross, G. W.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Ruseva, V.

V. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commun. 236, 219 (2004).
[CrossRef]

Sakuma, J.

Smith, P. G. R.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Sørensen, J. L.

Thorhauge, M.

Tidemand-Lichtenberg, P.

Toonen, A. J.

van Etteger, A. F.

van Kempen, H.

Vetter, P. A.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

Villa, F.

Ward, H.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Warrington, D. M.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

White, R. T.

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. T. White, I. T. Mckinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, "Tunable single-frequency ultraviolet generation from a continuous-wave Ti : sapphire laser with an intracavity PPLN frequency doubler," Appl. Phys. B 77, 547 (2003).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun

H. S. Moon, D.-Y. Jeong, K.-H. Ko, and E. C. Jung, "Laser-induced birefringence by using a linearly polarized field in Na D1 line and its application to laser frequency stabilization," Opt. Commun 228, 133 (2003).
[CrossRef]

Opt. Commun.

V. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commun. 236, 219 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phy. Rev. Lett.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, "Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium," Phy. Rev. Lett. 74, 2658 (1995).
[CrossRef]

Other

A. Owunwanne, M. Patel, and S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the injection-locked Ti:sapphire laser.

Fig. 2.
Fig. 2.

(a) Free-running and injection-locked output power of the Ti:sapphire laser with respect to pump power and pump absorption through the Ti:sapphire crystal. (b) 378-nm power coupled out from the enhancement cavity with respect to 756-nm input power.

Fig. 3.
Fig. 3.

Schematic of the experimental setup for the generation of dispersion-like signal based on LIB: PBS, polarizing beam splitter; BS, beam splitter; PDs, photodiodes.

Fig. 4.
Fig. 4.

(a) Dispersion-like signals of the transition 62P1/2 -72S1/2 for thallium-203 and thallium-205 isotopes generated by the LIB method. (b) Frequency locking and stability of the 378-nm radiation.

Metrics