Abstract

Lasing effects based on individual quantum dots have been investigated in optically pumped high-Q micropillar cavities. We demonstrate a lowering of the threshold pump power from a off-resonance value of 37 µW to 18 µW when an individual quantum dot exciton is on-resonance with the cavity mode. Photon correlation studies below and above the laser threshold confirm the single dot influence. At resonance we observe antibunching with g(2)(0)=0.36 at low excitation, which increases to 1 at about 1.5 times the threshold. In the off-resonant case, g(2)(0) is about 1 below and above threshold.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  2. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
    [CrossRef] [PubMed]
  3. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
    [CrossRef]
  4. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
    [CrossRef] [PubMed]
  5. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
    [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
    [CrossRef] [PubMed]
  7. P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000).
    [CrossRef]
  8. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
    [CrossRef] [PubMed]
  9. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
    [CrossRef]
  10. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
    [CrossRef] [PubMed]
  11. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
    [CrossRef]
  12. M. Sugawara, J. C. Bean, "Self-assembled InGaAs/GaAs quantum dots: semiconductors and semimetals," 1st edition (Academic Press, 1999).
  13. J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
    [CrossRef]
  14. G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
    [CrossRef] [PubMed]
  15. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
    [CrossRef] [PubMed]
  16. A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
    [CrossRef]
  17. W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).
  18. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).
  19. L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
    [CrossRef]
  20. S. Rudin, and T. L. Reinecke, „Oscillator model for vacuum Rabi splitting in microcavities," Phys. Rev. B 59, 10227-10232 (1999).
    [CrossRef]
  21. L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
    [CrossRef]
  22. J. M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," in Single Quantum Dots, P. Michler, ed. (Springer 2003), pp. 269-315
  23. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
    [CrossRef]
  24. S. Marcinkevicius and R. Leon, "Rapid Carrier capture and escape in InxGa1-xAs/GaAs quantum dots: Effects of intermixing, " Phys. Rev. B 59, 4630-4633 (1999).
    [CrossRef]
  25. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
    [CrossRef] [PubMed]
  26. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
    [CrossRef] [PubMed]
  27. P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
    [CrossRef]

2007

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

2006

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

2005

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

2004

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

2002

J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

2001

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

2000

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000).
[CrossRef]

1999

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

S. Rudin, and T. L. Reinecke, „Oscillator model for vacuum Rabi splitting in microcavities," Phys. Rev. B 59, 10227-10232 (1999).
[CrossRef]

S. Marcinkevicius and R. Leon, "Rapid Carrier capture and escape in InxGa1-xAs/GaAs quantum dots: Effects of intermixing, " Phys. Rev. B 59, 4630-4633 (1999).
[CrossRef]

1998

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

1996

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

1994

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Albrecht, M.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

Alferov, Zh. I.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Andreani, L.

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

Ates, S.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Awschalom, D. D.

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Bazhenov, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

Becher, C.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Bimberg, D.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Buratto, S. K.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

Cao, H.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

Carson, P. J.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Fang, W.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

Forchel, A.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Gérard, J.-M.

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

Ghosh, S.

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Gies, C.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).

Gorbunov, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

Gösele, U.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

Grundmann, M.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Heydenreich, J.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

Jahnke, F.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

Keldysh, L. V.

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Kiraz, A.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Kirstaedter, N.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Kop'ev, P. S.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Ledentsov, N. N.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Leon, R.

S. Marcinkevicius and R. Leon, "Rapid Carrier capture and escape in InxGa1-xAs/GaAs quantum dots: Effects of intermixing, " Phys. Rev. B 59, 4630-4633 (1999).
[CrossRef]

Li, X.

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

Lidong Zhang, A.

P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000).
[CrossRef]

Lidong Zhang, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Löffler, A.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Lorke, M.

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).

Makhonin, M. N.

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

Marcinkevicius, S.

S. Marcinkevicius and R. Leon, "Rapid Carrier capture and escape in InxGa1-xAs/GaAs quantum dots: Effects of intermixing, " Phys. Rev. B 59, 4630-4633 (1999).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

Maximov, M. V.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Mendoza, F. M.

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

Michler, P.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000).
[CrossRef]

Münch, S.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

Ohnesorge, B.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

Oshinowo, J.

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

Panzarini, G.

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

Pelton, M.

J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

S. Rudin, and T. L. Reinecke, „Oscillator model for vacuum Rabi splitting in microcavities," Phys. Rev. B 59, 10227-10232 (1999).
[CrossRef]

Reithmaier, J. P.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Richter, U.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Rudin, S.

S. Rudin, and T. L. Reinecke, „Oscillator model for vacuum Rabi splitting in microcavities," Phys. Rev. B 59, 10227-10232 (1999).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Ruvimov, S. S.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Samarth, N.

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

Santori, C.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Sek, G.

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Solomon, G. S.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Strouse, G. F.

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Ulrich, S. M.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

Ustinov, V. M.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Vuckovic, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
[CrossRef]

Wang, W. H.

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Werner, P.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

Wiersig, J.

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

Xie, Z. G.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, and A. Imamoğlu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-Q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107-1-3 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105-1-3 (2005).
[CrossRef]

Electron. Lett.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, "Low threshold, large To injection laser emission from (InGa)As quantum dots," Electron. Lett. 30, 1416-1417 (1994).
[CrossRef]

JETP Lett.

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin and A. Forchel, " Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

Nature

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203, (2004).
[CrossRef] [PubMed]

Phys. Rev. A

J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808-1-9 (2002).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994).
[CrossRef] [PubMed]

Phys. Rev. B

W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, "Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots," Phys. Rev. B 71, 155306-1-5 (2005).

C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, "Semiconductor model for quantum-dot-based microcavity lasers," Phys. Rev. B 75, 0138031-1-1 (2007).

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

S. Rudin, and T. L. Reinecke, „Oscillator model for vacuum Rabi splitting in microcavities," Phys. Rev. B 59, 10227-10232 (1999).
[CrossRef]

B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, „Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532-11538 (1996).
[CrossRef]

S. Marcinkevicius and R. Leon, "Rapid Carrier capture and escape in InxGa1-xAs/GaAs quantum dots: Effects of intermixing, " Phys. Rev. B 59, 4630-4633 (1999).
[CrossRef]

Phys. Rev. Lett.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602-1-4 (2002).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, „Photon Statistics of Semiconductor Microcavity Lasers," Phys. Rev. Lett. 98, 043906-1-4 (2007).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime," Phys. Rev. Lett. 98, 117402-1-4 (2007).
[CrossRef] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators," Phys. Rev. Lett. 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser," Phys. Rev. Lett. 98, 117401-1-4 (2007).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-4 (2006).
[CrossRef] [PubMed]

Phys. Stat. Sol. (B)

P. Michler, A. Imamoğlu, A. Kiraz, C. Becher, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, W. V. Schoenfeld, and P. M. Petroff, "Nonclassical radiation from a single quantum dot," Phys. Stat. Sol. (B) 1, 399-405 (2002).
[CrossRef]

Science

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Other

J. M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," in Single Quantum Dots, P. Michler, ed. (Springer 2003), pp. 269-315

M. Sugawara, J. C. Bean, "Self-assembled InGaAs/GaAs quantum dots: semiconductors and semimetals," 1st edition (Academic Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Dependence of the output intensity on the excitation power for an optically pumped (CW at 514 nm) quantum dot micropillar laser structure (pillar A) with a diameter dc of 1.6 µm. X: Quantum dot exciton, C: Cavity mode. For T=Tres =18 K (X on resonance with C, full dots) we observe a steeper slope of the output versus the pump power than in the off-resonance case at T=25 K (detuning by 0.2 meV, open circles). The high slope section of the output starts at lower pump for the on-resonance case indicating a lower laser threshold due to the single dot on resonance. Inset: Photoluminescence spectrum at low excitation intensity (CW, 10 µW) at a temperature of 18 K (single dot emission line X on-resonance with C) and 25 K (off-resonance case). The empty cavity mode has a Q-factor of about 16000 (γc =85 µeV).

Fig. 2.
Fig. 2.

(a) Output intensities and average photon number emitted by the laser structure (pillar A) as determined by fits with Eq. 2 versus the pump power for on-resonance (T=18 K, full dots) and off-resonance (T=25 K, open circles) conditions of the cavity mode and a single quantum dot exciton. Fitting the experimental data according to Eq. 2 yields a β-value of 0.96 (0.59) for the on- (off-) resonance case and threshold pump powers of 18 µW and 37 µW for on- and off-resonance condition, respectively. Dash–dotted line: linear output-input dependence extrapolated from the below threshold data in the non-resonant case. Inset: Off-resonance cavity mode linewidth as a function of excitation power. (b) Output intensity of pillar B as a function of the excitation power. Laser action is absent for this structure which is attributed to an insufficient background gain contribution as a result of a very low spectral density (<1 QD transition lines/meV) of non resonant QDs in the vicinity of the cavity mode. Inset: Low excitation µPL spectrum of pillar B with a diameter of 1.6 µm (Q=17.000) for T=18 K (QD exciton X on-resonance with cavity mode C) and T=24 K (off-resonance).

Fig. 3.
Fig. 3.

(a) Temperature tuning of a single QD exciton (X) into resonance with the cavity mode (C) (pillar A). Strong enhancement of the exciton emission intensity is observed near resonance at 18 K. (b) Calculated spectra for a coupling strength of g=18 µeV as a function of the detuning between X and C. (c) Demonstration of the single QD gain contribution at several excitation powers below and above laser threshold of Pth ≈40 µW. The dispersion of X and C depicted in the lowest panel exhibits line crossing at resonance (18 K at P=1 µW) as a sign of the weak coupling regime. The upper four panels show the output intensity, i.e. the sum of the integrated intensities of X and C, normalized to the respective off resonance value as a function of temperature. The gain contribution of a single quantum dot is reflected in the strong increase of the output intensity, i.e. the sum of the integrated intensities of X and C, at resonance. A small shift of the resonance to lower temperatures is attributed to a local heating of the pillar with increasing excitation power.

Fig. 4.
Fig. 4.

Output intensity and average photon number (a, top panel) and second order correlation function g(2) meas (0) (b, bottom panel) of the micropillar laser (pillar C) versus time averaged pumping power (pulsed excitation at 790 nm) for a single dot exciton X on-resonance and off - resonance. Experimental data: on - resonance (T=23 K): full dots; off-resonance: open circles (T=39 K). (a) Output intensity respectively photon numbers versus pump power characteristics. Solid line: Calculation for the on-resonant case. The horizontal and vertical lines mark the laser threshold in the case of the dot being on-resonance. Dashed line: Calculation for the off-resonance case. (b) Second order correlation experiments: on-resonance: strong antibunching with g(2) meas (0) down to 0.36 is observed at low excitation power indicating a nonclassical single dot emitter. Even at the lasing threshold for the on-resonance case (indicated by the vertical line) clear antibunching occurs, reflecting a significant single dot contribution to the lasing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n SQD = β τ ph f QD τ sp
I ( p ) = A [ p 1 + p ( 1 + ζ ) ( 1 + β p ) ζ β p ]
E ± = E C + E X 2 + 0 i 4 ( γ X + γ C ) ± g 2 ( γ X γ C 4 ) 2 .
g meas ( 2 ) ( 0 ) = 1 + ρ 2 ( g ( 2 ) ( 0 ) 1 ) .

Metrics