Abstract

We show that optical parametric generation in a nonlinear crystal with a large group velocity mismatch between the pump and nearly-degenerate signal and idler is analogous to laser amplification in the medium with a gain recovery time comparable to the walk-off time. Based on this conclusion we propose to combine an OPO with a nonlinear saturable absorber or Kerr lens to generate directly high peak power sub-picosecond pulses using pump pulses ranging from tens of picoseconds to quasi-CW. Our analytical model predicts better than 80% photon conversion efficiency and pulse lengths that are of the order of a few hundred femtoseconds. Numerical simulations confirm our predictions and show that repetitive passive mode locking is feasible with a quasi-CW pump.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Wachman, D. C. Edelstein, and C. L. Tang, "Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator," Opt. Lett. 15, 136 (1990).
    [CrossRef] [PubMed]
  2. J. M. Melkonian, N. Forget, F. Bretenaker, C. Drag, M. Lefebvre, and E. Rosencher, "Active mode locking of continuous-wave doubly and singly-resonant optical parametric oscillators," Opt. Lett. 32, 1701 (2007).
    [CrossRef] [PubMed]
  3. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
    [CrossRef]
  4. R. Laenen, H. Graener, and A. Laubereau, "Broadly tunable femtosecond pulses generated by optical parametric oscillation," Opt. Lett. 15, 971 (1990).
    [CrossRef] [PubMed]
  5. K. Wolfrum, R. Laenen, and A. Laubereau, "Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range," Opt. Commun. 97, 41 (1993).
    [CrossRef]
  6. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "20- fold pulse compression in a synchronously pumped optical parametric oscillator," Appl. Phys. Lett. 65, 1614 (1994).
    [CrossRef]
  7. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch," Opt. Lett,  19, 831 (1994).
    [CrossRef] [PubMed]
  8. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse-compression mechanism in a synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 12, 2199 (1995).
    [CrossRef]
  9. A. Umbrasas, J.-C. Diels, J. Jacob, and A. Piskarskas, "Parametric oscillation and compression in KTP crystals," Opt. Lett. 19, 1753 (1994).
    [CrossRef] [PubMed]
  10. C. Rauscher, T. Roth, R. Laenen, and A. Laubereau, "Tunable femtosecond-pulse generation by an optical parametric oscillator in the saturation regime," Opt. Lett. 20, 2003 (1995).
    [CrossRef] [PubMed]
  11. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, "Generation of femtosecond pulses from order-of magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett. 24, 28 (1999).
    [CrossRef]
  12. R. S. Kurti and K. D. Singer, "Pulse compression in a silver gallium sulfide midinfrared, synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 22, 2157 (2005).
    [CrossRef]
  13. G. Arisholm, "General analysis of group velocity effects in collinear optical parametric amplifiers and generators," Opt. Express 15, 6513 (2007)
    [CrossRef] [PubMed]
  14. R. Laenen, C. Rauscher, A. Laubereau, "Kerr lens mode locking of a sub-picosecond optical parametric oscillator," Opt. Commun. 115533 (1995).
    [CrossRef]
  15. S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
    [CrossRef]
  16. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  17. D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogenous laser," IEEE J. Quantum Electron. QE-6, 694 (1970).
    [CrossRef]
  18. H. A, Haus, ‘Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 11, 736 (1975).
  19. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. QE-11, 736 (1975).
    [CrossRef]
  20. K. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. Kozlov, W. C. Hurlbut, Y. -s. Lee, C. Lynch, and D. Bliss, "New Light from Gallium Arsenide: Micro-Structured GaAs for Mid-IR and THz-Wave Generation," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMJ1.
  21. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  22. M. Ebrahimzadeh, P. J. Phillips, and S. Das, "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Appl. Phys. B 72, 793 (2001)
    [CrossRef]
  23. M. L. Bortz, M. A. Arbore, and M. M. Fejer, "Quasi-phase-matched optical parametric amplification and oscillation in periodically poled waveguides," Opt. Lett. 20, 49 (1995).
    [CrossRef] [PubMed]
  24. J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
    [CrossRef]
  25. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
    [CrossRef]
  26. G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691 (1996)
    [CrossRef]

2007 (2)

2006 (1)

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

2005 (1)

2001 (1)

M. Ebrahimzadeh, P. J. Phillips, and S. Das, "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Appl. Phys. B 72, 793 (2001)
[CrossRef]

2000 (1)

J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
[CrossRef]

1999 (1)

1996 (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691 (1996)
[CrossRef]

1995 (4)

1994 (3)

A. Umbrasas, J.-C. Diels, J. Jacob, and A. Piskarskas, "Parametric oscillation and compression in KTP crystals," Opt. Lett. 19, 1753 (1994).
[CrossRef] [PubMed]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "20- fold pulse compression in a synchronously pumped optical parametric oscillator," Appl. Phys. Lett. 65, 1614 (1994).
[CrossRef]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch," Opt. Lett,  19, 831 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Wolfrum, R. Laenen, and A. Laubereau, "Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range," Opt. Commun. 97, 41 (1993).
[CrossRef]

1990 (2)

1975 (2)

H. A, Haus, ‘Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 11, 736 (1975).

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

1970 (1)

D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogenous laser," IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

1968 (1)

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Andrews, J. H.

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse-compression mechanism in a synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 12, 2199 (1995).
[CrossRef]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch," Opt. Lett,  19, 831 (1994).
[CrossRef] [PubMed]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "20- fold pulse compression in a synchronously pumped optical parametric oscillator," Appl. Phys. Lett. 65, 1614 (1994).
[CrossRef]

Arbore, M. A.

Arisholm, G.

Bortz, M. L.

Bretenaker, F.

Butterworth, S. D.

Chirkin, A. S.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Das, S.

M. Ebrahimzadeh, P. J. Phillips, and S. Das, "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Appl. Phys. B 72, 793 (2001)
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Diels, J.-C.

Drabovich, K. N.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Drag, C.

Ebrahimzadeh, M.

M. Ebrahimzadeh, P. J. Phillips, and S. Das, "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Appl. Phys. B 72, 793 (2001)
[CrossRef]

Edelstein, D. C.

Euser, T. G.

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Fejer, M. M.

Forget, N.

Graener, H.

Guina, M.

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691 (1996)
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Hakulinen, T.

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Hanna, D. C.

Haus, H. A.

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

Jacob, J.

Khaydarov, J. D. V.

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse-compression mechanism in a synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 12, 2199 (1995).
[CrossRef]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch," Opt. Lett,  19, 831 (1994).
[CrossRef] [PubMed]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "20- fold pulse compression in a synchronously pumped optical parametric oscillator," Appl. Phys. Lett. 65, 1614 (1994).
[CrossRef]

Khokhlov, R. V.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Kovrigin, A. I.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogenous laser," IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Kurti, R. S.

Laenen, R.

C. Rauscher, T. Roth, R. Laenen, and A. Laubereau, "Tunable femtosecond-pulse generation by an optical parametric oscillator in the saturation regime," Opt. Lett. 20, 2003 (1995).
[CrossRef] [PubMed]

R. Laenen, C. Rauscher, A. Laubereau, "Kerr lens mode locking of a sub-picosecond optical parametric oscillator," Opt. Commun. 115533 (1995).
[CrossRef]

K. Wolfrum, R. Laenen, and A. Laubereau, "Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range," Opt. Commun. 97, 41 (1993).
[CrossRef]

R. Laenen, H. Graener, and A. Laubereau, "Broadly tunable femtosecond pulses generated by optical parametric oscillation," Opt. Lett. 15, 971 (1990).
[CrossRef] [PubMed]

Laubereau, A.

R. Laenen, C. Rauscher, A. Laubereau, "Kerr lens mode locking of a sub-picosecond optical parametric oscillator," Opt. Commun. 115533 (1995).
[CrossRef]

C. Rauscher, T. Roth, R. Laenen, and A. Laubereau, "Tunable femtosecond-pulse generation by an optical parametric oscillator in the saturation regime," Opt. Lett. 20, 2003 (1995).
[CrossRef] [PubMed]

K. Wolfrum, R. Laenen, and A. Laubereau, "Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range," Opt. Commun. 97, 41 (1993).
[CrossRef]

R. Laenen, H. Graener, and A. Laubereau, "Broadly tunable femtosecond pulses generated by optical parametric oscillation," Opt. Lett. 15, 971 (1990).
[CrossRef] [PubMed]

Lefebvre, M.

Lefort, L.

Marcinkevicius, S.

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Melkonian, J. M.

Okhotnikov, O. G.

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Phillips, P. J.

M. Ebrahimzadeh, P. J. Phillips, and S. Das, "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Appl. Phys. B 72, 793 (2001)
[CrossRef]

Piskarskas, A.

Puech, K.

Rauscher, C.

C. Rauscher, T. Roth, R. Laenen, and A. Laubereau, "Tunable femtosecond-pulse generation by an optical parametric oscillator in the saturation regime," Opt. Lett. 20, 2003 (1995).
[CrossRef] [PubMed]

R. Laenen, C. Rauscher, A. Laubereau, "Kerr lens mode locking of a sub-picosecond optical parametric oscillator," Opt. Commun. 115533 (1995).
[CrossRef]

Rosencher, E.

Roth, T.

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogenous laser," IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

Singer, K. D.

R. S. Kurti and K. D. Singer, "Pulse compression in a silver gallium sulfide midinfrared, synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 22, 2157 (2005).
[CrossRef]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse-compression mechanism in a synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 12, 2199 (1995).
[CrossRef]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch," Opt. Lett,  19, 831 (1994).
[CrossRef] [PubMed]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "20- fold pulse compression in a synchronously pumped optical parametric oscillator," Appl. Phys. Lett. 65, 1614 (1994).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691 (1996)
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Suomalainen, S.

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Svirko, Y. P.

Tang, C. L.

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691 (1996)
[CrossRef]

Umbrasas, A.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

Wachman, E. S.

Wolfrum, K.

K. Wolfrum, R. Laenen, and A. Laubereau, "Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range," Opt. Commun. 97, 41 (1993).
[CrossRef]

Appl. Phys. B (1)

M. Ebrahimzadeh, P. J. Phillips, and S. Das, "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Appl. Phys. B 72, 793 (2001)
[CrossRef]

Appl. Phys. Lett (1)

S. Suomalainen, M. Guina, T. Hakulinen, O. G. Okhotnikov, T. G. Euser, S. Marcinkevicius, "1 μm saturable absorber with recovery time reduced by lattice mismatch," Appl. Phys. Lett,  89071112 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "20- fold pulse compression in a synchronously pumped optical parametric oscillator," Appl. Phys. Lett. 65, 1614 (1994).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogenous laser," IEEE J. Quantum Electron. QE-6, 694 (1970).
[CrossRef]

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324 (1996).
[CrossRef]

J. Appl. Phys. (1)

H. A, Haus, ‘Theory of mode locking with a fast saturable absorber," J. Appl. Phys. 11, 736 (1975).

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

R. Laenen, C. Rauscher, A. Laubereau, "Kerr lens mode locking of a sub-picosecond optical parametric oscillator," Opt. Commun. 115533 (1995).
[CrossRef]

K. Wolfrum, R. Laenen, and A. Laubereau, "Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range," Opt. Commun. 97, 41 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, "Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch," Opt. Lett,  19, 831 (1994).
[CrossRef] [PubMed]

Opt. Lett. (7)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691 (1996)
[CrossRef]

Phys. Rev. A (1)

J. B. Khurgin, "Light slowing down in Moire fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Other (3)

K. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. Kozlov, W. C. Hurlbut, Y. -s. Lee, C. Lynch, and D. Bliss, "New Light from Gallium Arsenide: Micro-Structured GaAs for Mid-IR and THz-Wave Generation," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMJ1.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Mode-locked pump-swept OPO with a walk-off δtps between signal, pump and idler. L crystal length, ML mode locker, α total cavity loss (mirror loss and unsaturated loss), t 1/2 (p) pump FWHM duration, Δt 1/2 signal FWHM duration, ts signal total duration, νp,s,i group velocity of the pump, signal, and idler waves respectively.

Fig. 2.
Fig. 2.

(a) Pump field depletion as a function of time following the short signal pulse for different values of signal energy in units of saturation energy nsat. (b) Depletion of small signal gain for the pump-swept OPO with walk-off δtps (solid lines) and an equivalent saturable laser amplifier with gain recovery time δtps/2 (dashed lines).

Fig. 3.
Fig. 3.

(a) Photon conversion efficiency and saturated gain as a function of circulating signal pulse energy (in units of saturation energy). (b) Input-output characteristic of the pump-swept OPO. The photon numbers are normalized to the threshold.

Fig. 4.
Fig. 4.

(a) Parametric gain (solid) and its Gaussian approximation (dashed). (b) Temporal characteristics of the instant passive mode locker (left scale, solid line) in the presence of a signal pulse (right scale) and the Gaussian approximation (dashed line).

Fig. 5.
Fig. 5.

(a) Group index in GaAs. (b) Phase matching bandwidth as a function of signal wavelength.

Fig. 6.
Fig. 6.

Temporal dependencies of signal, idler and pump in a GaAs pump-swept OPO (18 ps walk-off) without mode locker. The pump is a 20 ps long 10 nJ pulse at 1060 nm. (a) Mirror loss 3%. (b) Mirror loss 9%.

Fig. 7.
Fig. 7.

Temporal dependencies of signal, idler and pump in a GaAs mode-locked pump-swept OPO with 18 ps walk-off and with mode locker. Mirror loss 3%. Pump 6× threshold. (a) Instant, Psat=25 KW; (b) 2 ps response Psat=25 KW; (c) 2 ps response Psat=12 KW.

Fig. 8.
Fig. 8.

Simulated mode locking of the cw-pumped mode-locked pump-swept OPO. (a) Without mode locker. (b) With mode locker showing the cavity round-trip time τrt. (c) Signal pulse, close view of (b). (d) Spectrum of the signal with mode locker. Mirror loss 9%, pump 6× threshold. Other parameters used are indicated in the text.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

A s z + 1 ν s A s t = κ A p A i * e j Δ kz
A i z + 1 ν i A i t = κ A p A s * e j Δ kz
A p z + 1 ν p A p t = κ A s A i e j Δ kz ,
κ = χ ( 2 ) c ( ω p ω s ω i 2 n r ( p ) n r ( s ) n r ( i ) ħ η 0 S ) 1 2 ,
A s ( z , t ) z δ ν 1 A s ( z , t ) t = κ A p ( z , t ) A i * ( z , t )
A i ( z , t ) z δ ν 1 A i ( z , t ) t = κ A p ( z , t ) A s * ( z , t )
A p ( z , t ) z = κ A s ( z , t ) A i ( z , t ) ,
A s , i ( z , t ) = n s , i ( z ) f ( t ( L z ) δ ν 1 ) ;
0 t s f 2 ( τ ) d τ = 1 ; f ( τ ) = 0 for τ < 0 and τ > t s ,
A p ( z , t ) = A p 0 κ n s 0 z n i ( z ) f 2 ( t ( L z 1 ) δ ν 1 ) dz 1
= A p 0 ( κ δ ν 1 ) n s 0 t ( L z ) δ ν 1 n i ( L t δ ν 1 + τ δ ν 1 ) f 2 ( τ ) d τ ,
A p ( z , t ) = A p 0 ( κ δ ν 1 ) n s n i ( L t δ ν 1 ) 0 t ( L z ) δ ν 1 f 2 ( τ ) d τ .
d A i ( z , t ) dz δ ν 1 A i ( z , t ) t
= κ A s ( z , t ) [ A p 0 ( κ δ ν 1 ) n s n i ( L t δ ν 1 ) 0 t ( L z ) δ ν 1 f 2 ( τ ) d τ ] .
1 2 dn i ( z ) dz = κ n s n i ( z ) A p 0 [ 1 γ ( κ δ ν 1 ) n s n i ( z ) A p 0 ] ,
γ = 0 t s f 2 ( τ 2 ) d τ 2 0 τ 2 f 2 ( τ ) d τ ,
n i ( z ) = A p 0 1 e γ ( κ 2 δ ν 1 ) n s z γ κ n s δ ν 1 = n a ν 1 e n s n sat z L γ ( n s n sat ) ,
n sat = δ ν 1 γ κ 2 L ,
n a ν = A po 2 L δ ν 1 .
A p ( L , t ) = A p ( L t δ ν 1 + t s δ ν 1 , t ) = A p 0 [ 1 1 e n s n sat t δ t ps δ t ps γ ] ,
g OPO ( t ) 1 = [ κ L t δ t ps A p ( L , t ) d t δ t ps + κ L δ t ps δ t ps + t A p 0 d t δ t ps ] 2
= ( g 0 1 ) γ 2 [ 1 n s n sat ( 1 e n s n sat ( t δ t ps 1 ) ) 1 + γ + t δ t ps ] 2 ,
g OPO ( 0 ) 1 = ( g 0 1 ) γ 2 [ 1 n s n sat ( 1 e n s n sat ) 1 + γ ] 2 ,
g opo ( 0 ) 1 ( g 0 1 ) e n s γ n sat .
g eq ( t ) 1 = ( g 0 1 ) [ 1 ( 1 e 2 n s n sat ) e 2 t δ t ps ] .
η = n i ( L ) n a ν = α n s n a ν = ( 1 e n s n sat ) 2 γ n s n sat ,
n a ν = α γ n sat ( n s n sat ) 2 ( 1 e n s n sat ) 2 ,
n a ν , th = α γ n sat lim n s 0 ( n s n sat ) 2 ( 1 e n s n sat ) 2 = α γ n sat .
P 0 , th = A p 0 , th 2 = α κ 2 L 2 ,
n a ν , opt = n s , opt out η max 3 γ α n sat 3 n a ν , th ,
g ( Δ ω ) g ( 0 ) exp ( Δ ω 2 2 σ g 2 ) ( α + 1 ) exp ( Δ ω 2 2 σ g 2 ) ,
σ g 2 Δ ω 1 2 2 2.7 1 + α α .
α A ( t ) = α 0 1 + p s ( t ) p A , sat ,
T ( I 0 , t ) T 0 e Δ t 2 2 σ m 2 ,
T 0 = 1 + p 0 p A , sat α 0 1 + p 0 p A , sat ,
1 σ m 2 = α sat α 0 α 0 α sat 1 α sat 1 σ t 2 ,
1 σ t 2 2 = ( α sat α 0 α 0 α sat 1 α sat + 1 ) 1 σ t 1 2 ,
4 σ t 3 2 = 4 σ t 2 2 + σ g 2 .
Δ t 1 2 = 0.8 2 ln 2 π Δ ν 1 2 1 ( α 1 + α ) ( 1 + α 0 α sat 1 α sat α 0 α sat ) ,
Δ t 1 2 0.3 Δ v 1 2 1 K .
G = δ t ps Δ t 1 2 π L δ ν 1 Δ ν 1 2 1 K = 1.4 K δ ν 1 δ ν si 1 ,
p 0 , t h S α λ i λ s n r 3 2 π 2 η 0 L 2 [ χ ( 2 ) ] 2 10 6 W cm 2 .
Δ t d i s p v 1 L n s λ ~ 80 f s Δ v 1 2 1 ~ 1 ps ,

Metrics