Abstract

The authors theoretically demonstrate a plamonic beam deflector based on the particular properties of surface plasmon polaritons in metallic nanoslits. Beam deflection ranging from 0° to 90° can be achieved by designing the deflector with appropriate structural parameters. Numerical illustrations of deflectors for variant deflection angles are presented through finite-difference time-domain simulation, showing good agreement with theoretical analysis. The efficiency and some factors influencing the deflection behavior are also discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1988), Chap. 2, pp. 4-7.
  2. Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642 (2004).
    [CrossRef]
  3. Z. J. Sun, "Beam splitting with a modified metallic nano-optic lens," Appl. Phys. Lett. 89, 26119 (2006).
    [CrossRef]
  4. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
    [CrossRef]
  5. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815 (2005).
    [CrossRef] [PubMed]
  6. C. J. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media," Opt. Express 15, 9541 (2007).
    [CrossRef] [PubMed]
  7. H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation by based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
    [CrossRef]
  8. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1999), Chap.1, pp. 16-17.
  9. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003), Chap. 4, pp. 352-353.
  10. S. J. Walker, J. Jahns, L. Li, W. M. Mansfiekd, P. Mulgrew, D. M. Tennant, C. W. Roberts, L. C. West, and N. K. Ailawadi, "Design and fabrication of high-efficiency beam splitters and beam deflectors for integrated planar micro-optic systems," Appl. Opt. 28, 2494 (1993).
    [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
    [CrossRef]

2007

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation by based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

C. J. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media," Opt. Express 15, 9541 (2007).
[CrossRef] [PubMed]

2006

Z. J. Sun, "Beam splitting with a modified metallic nano-optic lens," Appl. Phys. Lett. 89, 26119 (2006).
[CrossRef]

2005

2004

Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

1993

Ailawadi, N. K.

Deng, Y.

Dong, X. C.

Du, C. L.

H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation by based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

Gao, H. T.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

Jahns, J.

Jiao, X. J.

Kim, H. K.

Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

Li, L.

Luo, X. G.

H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation by based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815 (2005).
[CrossRef] [PubMed]

Mansfiekd, W. M.

Min, C. J.

Ming, H.

Mulgrew, P.

Roberts, C. W.

Shi, H. F.

H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation by based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815 (2005).
[CrossRef] [PubMed]

Sun, Z. J.

Z. J. Sun, "Beam splitting with a modified metallic nano-optic lens," Appl. Phys. Lett. 89, 26119 (2006).
[CrossRef]

Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Tennant, D. M.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

Walker, S. J.

Wang, C. T.

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815 (2005).
[CrossRef] [PubMed]

Wang, P.

West, L. C.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

Xu, T.

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Z. J. Sun, "Beam splitting with a modified metallic nano-optic lens," Appl. Phys. Lett. 89, 26119 (2006).
[CrossRef]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by the metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation by based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole array," Nature 391, 667 (1998).
[CrossRef]

Opt. Express

Other

H. Raether, Surface Plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1988), Chap. 2, pp. 4-7.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1999), Chap.1, pp. 16-17.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003), Chap. 4, pp. 352-353.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the metallic beam deflector. d and θ represent the thickness and deflection angle of the deflector, respectively. The inset depicts the excitation and propagation of SPP in the nanoslit when the incident light impinges on the metal surface.

Fig. 2.
Fig. 2.

Distribution of slit width at different positions perforated in the silver film. (a) (b) (c) (d) correspond to the deflectors designed for 30°, 45°, 60° and 80°, respectively.

Fig. 3.
Fig. 3.

Phase distribution of electric field for the radiated beam from the deflector. (a) (b) (c) (d) correspond to the designed deflection angles of 30°, 45°, 60° and 80°, respectively.

Fig. 4.
Fig. 4.

Far field angular spectrum of the deflectors designed for 30°, 45°, 60° and 80°, respectively. The inset depicts the angular spectrum for the cases of deflector with different aperture and slit number designed for 45°.

Fig. 5.
Fig. 5.

(a). Calculated phase distribution of electric field for the designed deflector. Incident and deflection angles are designed as 30° and -30°, respectively. (b) Far field angular spectrum for the incident and emitted beams, respectively.

Fig. 6.
Fig. 6.

The dependence of deflection angle on incident wavelength for the deflector designed for 45° at a wavelength of 650nm. The incident wavelength ranges from 550nm to 750nm, with a step of 10nm.

Fig. 7.
Fig. 7.

Calculated effective refractive index and phase retardation in the slit region as a function of slit width.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tanh ( k spp 2 k 0 2 ε d w 2 ) = ε d k spp 2 k 0 2 ε m ε m k spp 2 k 0 2 ε d ,
Δ ϕ = Δ ϕ 1 + Δ ϕ 2 + k spp d Φ ,
Δ ϕ ( x ) = 2 n π + Δ ϕ ( 0 ) 2 π λ · x · sin θ ,

Metrics