Abstract

We studied the evolution of the Extraordinary Electromagnetic Transmission (EET) through subwavelength hole arrays versus hole size. Here, we show that for large holes EET vanishes and is replaced by another unusual transmission. A specific hole size is found where all the characteristics of the EET vanish and where most usual models fail to describe the transmission except full 3D simulations. The transition between these two domains is characterized by the discontinuity of parameters describing the transmission, in particular the resonance frequency. This transition exhibits a first order phase transition like behavior.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
    [CrossRef]
  2. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, "Enhanced nonlinear optical conversion from a periodically nanostructured metal film, " Opt. Lett. 28, 423-425 (2003).
    [CrossRef] [PubMed]
  3. H. A. Bethe, "Theory of diffraction by small apertures," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  4. C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35-100 (1954).
    [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  6. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
    [CrossRef]
  7. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
    [CrossRef] [PubMed]
  8. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
    [CrossRef]
  9. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  10. A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
    [CrossRef]
  11. E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
    [CrossRef] [PubMed]
  12. E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
    [CrossRef]
  13. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  14. Y.-H. Ye and J.-Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-2980 (2004).
    [CrossRef]
  15. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).
  16. D. Qu and D. Grischkowsky, "Observation of a new type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93, 196804 (2004).
    [CrossRef] [PubMed]
  17. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2745 (2004).
    [CrossRef]
  18. J. Gomez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-847.
    [CrossRef]
  19. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1004.
    [CrossRef] [PubMed]
  20. J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401(R) (2006).
  21. D. Qu, D. Grischkowsky and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004).
    [CrossRef] [PubMed]
  22. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
    [CrossRef]
  23. A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
    [CrossRef]
  24. F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006).
    [CrossRef]
  25. T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007).
    [CrossRef] [PubMed]
  26. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
  27. C. C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Technol. 21, 1-6 (1973).
    [CrossRef]
  28. J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998).
    [CrossRef]
  29. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1875 (1961).
    [CrossRef]
  30. C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003).
    [CrossRef]
  31. J.-B. Masson, A. Podzorov, and G. Gallot, "Generalized parabolic Fano model of extraordinary electromagnetic transmission in subwavelength hole arrays," submitted.
  32. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  33. L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]
  34. C. M. Soukoulis, "Photonic Crystals and Light Localization in the 21st Century," NATO Science Series Vol. 563 (Kluwer, Dordrecht, 2001).
  35. J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488.
    [CrossRef] [PubMed]
  36. E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
    [CrossRef]
  37. E. Ozbay, "Plasmonic : merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  38. Comsol Multiphysics, Comsol Inc., Burlington, MA.
  39. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R.W. Alexander, and C. A. Ward, "Optical-properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  40. Magnetic Properties of Metals, Landolt-Bornstein, Group III: condensed matter, Springer-Verlag, Berlin (1986).
  41. J. D. Jackson, Classical Electrodynamics, 3rd edition, John Wiley & Sons (1999).
  42. M. Born, E. Wolf, Principle of Optics, 7th edition, Cambridge University Press (2001).
  43. F. Schawbl, Statistical Mechanics, Springer (2000).
  44. H. E. Stanley, Introduction to phase transitions and critical phenomena, Oxford science publications (1971).
  45. J.-B. Masson and G. Gallot, "Experimental evidence of percolation phase transition in surface plasmons generation," ArXiv:cond-mat/0611280v1 (2006).

2007

2006

E. Ozbay, "Plasmonic : merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

2005

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

J. Gomez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-847.
[CrossRef]

2004

H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1004.
[CrossRef] [PubMed]

D. Qu, D. Grischkowsky and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Y.-H. Ye and J.-Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-2980 (2004).
[CrossRef]

D. Qu and D. Grischkowsky, "Observation of a new type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93, 196804 (2004).
[CrossRef] [PubMed]

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2745 (2004).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

2003

E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003).
[CrossRef]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, "Enhanced nonlinear optical conversion from a periodically nanostructured metal film, " Opt. Lett. 28, 423-425 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

2001

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

1999

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998).
[CrossRef]

1997

1990

1983

1973

C. C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Technol. 21, 1-6 (1973).
[CrossRef]

1961

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1875 (1961).
[CrossRef]

1954

C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

1944

H. A. Bethe, "Theory of diffraction by small apertures," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007).
[CrossRef] [PubMed]

Akhamediev, N. N.

J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998).
[CrossRef]

Alexander, J. R.W.

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

Azad, A. K.

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Besley, J. A.

J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998).
[CrossRef]

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small apertures," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Bolivar, P. H.

Bouwkamp, C. J.

C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Cao, H.

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Chen, C. C.

C. C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Technol. 21, 1-6 (1973).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
[CrossRef]

Dereux, A.

J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488.
[CrossRef] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488.
[CrossRef] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

Ebbesen, T. W.

J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488.
[CrossRef] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

Ebbesen, T.W.

F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
[CrossRef]

Enoch, S.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Fano, U.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1875 (1961).
[CrossRef]

Fattinger, Ch.

Gallot, G.

J.-B. Masson, A. Podzorov, and G. Gallot, "Generalized parabolic Fano model of extraordinary electromagnetic transmission in subwavelength hole arrays," submitted.

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401(R) (2006).

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Genet, C.

J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488.
[CrossRef] [PubMed]

F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003).
[CrossRef]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

Gomez Rivas, J.

J. Gomez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-847.
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Grischkowsky, D.

Grupp, D. E.

Hangyo, M.

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2745 (2004).
[CrossRef]

Haring Bolivar, P.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).

Hohng, S. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Ishi, T.

Janke, C.

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Keiding, S. R.

Kim, D. S.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Kim, J.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Kim, T. J.

Klein Koerkamp, K. J.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Kurz, H.

J. Gomez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-847.
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Laluet, J.-Y.

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

Li, L. F.

Lienau, Ch.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Linke, R. A.

Long, L. L.

Malyarchuk, V.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Masson, J.-B.

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401(R) (2006).

J.-B. Masson, A. Podzorov, and G. Gallot, "Generalized parabolic Fano model of extraordinary electromagnetic transmission in subwavelength hole arrays," submitted.

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007).
[CrossRef] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Miller, P. D.

J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998).
[CrossRef]

Miyamaru, F.

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2745 (2004).
[CrossRef]

Muller, R.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Nahata, A.

Ohashi, K.

Ordal, M. A.

Ozbay, E.

E. Ozbay, "Plasmonic : merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Park, J. W.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Park, Q. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Podzorov, A.

J.-B. Masson, A. Podzorov, and G. Gallot, "Generalized parabolic Fano model of extraordinary electromagnetic transmission in subwavelength hole arrays," submitted.

Przybilla, F.

F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

Qu, D.

D. Qu, D. Grischkowsky and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004).
[CrossRef] [PubMed]

D. Qu and D. Grischkowsky, "Observation of a new type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93, 196804 (2004).
[CrossRef] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Ryu, H. Y.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Schotsch, C.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).

Segerink, F. B.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

van Exter, M.

van Exter, M. P.

C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

van Hulst, N. F.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007).
[CrossRef] [PubMed]

Ward, C. A.

Weeber, J.-C.

J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3488.
[CrossRef] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

Woerdman, J. P.

C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

Ye, Y.-H.

Y.-H. Ye and J.-Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-2980 (2004).
[CrossRef]

Yoo, K. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Yoon, Y. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Zhang, J.-Y.

Y.-H. Ye and J.-Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-2980 (2004).
[CrossRef]

Zhang, W.

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

D. Qu, D. Grischkowsky and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004).
[CrossRef] [PubMed]

Zhao, Y.

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. Devaux, T. W. Ebbesen, J.-C. Weeber and A. Dereux, "Launching and decoupling surface plasmons via microgratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

A. Degiron, H. J. Lezec,W. L. Barnes, and T.W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81, 4327-4330 (2002).
[CrossRef]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, "Launching and decoupling surface plasmons via micro-gratings," Appl. Phys. Lett. 83, 4936-4939 (2003).
[CrossRef]

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2745 (2004).
[CrossRef]

Y.-H. Ye and J.-Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-2980 (2004).
[CrossRef]

A. K. Azad, Y. Zhao, and W. Zhang, "Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array," Appl. Phys. Lett. 86, 141102 (2005).
[CrossRef]

F. Przybilla, C. Genet, and T.W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Technol.

C. C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Technol. 21, 1-6 (1973).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature

T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007).
[CrossRef] [PubMed]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-668 (1998).
[CrossRef]

Opt. commun.

C. Genet, M. P. van Exter, J. P. Woerdman, "Fano-Type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1875 (1961).
[CrossRef]

H. A. Bethe, "Theory of diffraction by small apertures," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. Lett.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength apertures," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

D. Qu and D. Grischkowsky, "Observation of a new type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays," Phys. Rev. Lett. 93, 196804 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys.

C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Science

E. Ozbay, "Plasmonic : merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Studies in Applied Mathematics

J. A. Besley, N. N. Akhamediev, and P. D. Miller, "Periodic optical wavequides: exact Floquet theory and spectral properties," Studies in Applied Mathematics 101, 343-355 (1998).
[CrossRef]

Other

J.-B. Masson, A. Podzorov, and G. Gallot, "Generalized parabolic Fano model of extraordinary electromagnetic transmission in subwavelength hole arrays," submitted.

C. M. Soukoulis, "Photonic Crystals and Light Localization in the 21st Century," NATO Science Series Vol. 563 (Kluwer, Dordrecht, 2001).

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength apertures," Phys. Rev. B 68, 201306(R) (2003).

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B 73, 121401(R) (2006).

Comsol Multiphysics, Comsol Inc., Burlington, MA.

Magnetic Properties of Metals, Landolt-Bornstein, Group III: condensed matter, Springer-Verlag, Berlin (1986).

J. D. Jackson, Classical Electrodynamics, 3rd edition, John Wiley & Sons (1999).

M. Born, E. Wolf, Principle of Optics, 7th edition, Cambridge University Press (2001).

F. Schawbl, Statistical Mechanics, Springer (2000).

H. E. Stanley, Introduction to phase transitions and critical phenomena, Oxford science publications (1971).

J.-B. Masson and G. Gallot, "Experimental evidence of percolation phase transition in surface plasmons generation," ArXiv:cond-mat/0611280v1 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(A) Geometry of the square and round arrays of subwavelength holes. (B) Terahertz time domain spectroscopy setup.

Fig. 2.
Fig. 2.

2D lattice spectra of square holes, at low filling (a=450µm, black line) and high fillings (a=290µm red line, a=210µm blue line and a=190µm green line). Arrows show theoretical Bloch wave theory frequencies ( ν = c L i 2 + j 2 ) and the numbers inside parentheses specify the order of the maxima (i, j). The lattice period is L=600 µm.

Fig. 3.
Fig. 3.

Evolution of Δν, Q, and ΔW versus filling parameter. Results for square and round holes are in black and red, respectively. The lattice period is L=600 µm.

Fig. 4.
Fig. 4.

Lattice spectra of round holes, just before (p=1.26, black) and after (p=1.48, red) the discontinuity at pc =1.37. Inset gives details of the frequency shift.

Fig. 5.
Fig. 5.

Experimental results with the calculation from five models. Experimental results are exposed with the same geometry as figure 3 for square (left) and round (right) holes. The five models are: Chen model (solid green lines), Fano model (solid red lines), Fourier Modal Model (dashed red lines), Surface Plasmon Scattering model (dashed green lines) and Finite Element Method (solid blue lines).

Fig. 6.
Fig. 6.

Transmission spectrum for low filling parameter of round hole arrays (p=0.78, black line) and fit calculated from periodic Bethe transmission (red line).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

p = S m S a .
Δ ν = ν 0 ν ,
U = A t 2 ( t ) dt A 0 2 ( t ) dt ,
2 r = 1 2 A 00 r ξ 00 r f Φ 00 r = r = 1 2 pq ξ pqr f Φ pqr apert . Φ pqr * E t d s + r = 1 2 mn F mnr Y mnr Ψ mnr ,
T = α ( q + ε ) 2 1 + ε 2 with ε = E E φ Hilb ( V E ) π V E 2 ,
E r ( x , y , z ) = q [ u q exp ( i γ q z ) + d q exp ( i γ q z ) ] ϕ q ( x , y ) ,
E tot = n exp ( ik SP r n ) r n exp ( i k in · δ n ) ( e SP · E in )
ψ ( x ) e ikR R [ ψ 0 + ikR ( 1 + i kR ψ 0 ) ] ,
T = i 2 π ν c j = 1 N r r j r r j hole j 1 π 2 ( i 2 π ν c d 2 r j 2 H o + 1 2 d 2 r j 2 r j × E o ) d r j

Metrics